, Volume 52, Issue 9, pp 1203–1214 | Cite as

Backward-Diode Heterostructure Based on a Zinc-Oxide Nanoarray Formed by Pulsed Electrodeposition and a Cooper-Iodide Film Grown by the SILAR Method

  • N. P. Klochko
  • V. R. Kopach
  • G. S. Khrypunov
  • V. E. Korsun
  • V. M. Lyubov
  • D. O. Zhadan
  • A. N. Otchenashko
  • M. V. Kirichenko
  • M. G. Khrypunov


A heterostructure promising for designing a backward diode is formed from a zinc-oxide nanorod array and a nanostructured copper-iodide film. The effect of modes of successive ionic layer adsorption and reaction (SILAR) deposition and the subsequent iodization of CuI films on smooth glass, mica, and fluorine-doped tin oxide (FTO) substrates and on the surface of electrodeposited nanostructured zinc-oxide arrays on the film structure and electrical and optical properties is investigated. A connection between the observed variations in the structure and properties of this material and intrinsic and iodination-induced point defects is established. It is found that the cause and condition for creating a backward-diode heterostructure based on a zinc-oxide nanoarray formed by pulsed electrodeposition and a copper-iodide film grown by the SILAR method is the formation of a p+-CuI degenerate semiconductor by the excessive iodination of layers of this nanostructured material through its developed surface. The n-ZnO/p+-CuI barrier heterostructure, which is fabricated for the first time, has the IV characteristic of a backward diode, the curvature factor of which (γ = 12 V–1) confirms its high Q factor.



  1. 1.
    Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability, Ed. by A. B. Kaul (CRC, Taylor and Francis Group, New York, 2012).Google Scholar
  2. 2.
    M. Lundstrom and J. Guo, Nanoscale Transistors—Device Physics, Modeling and Simulation (Springer, New York, 2006).Google Scholar
  3. 3.
    M. Salimian, M. Ivanov, F. L. Deepak, D. Y. Petrovykh, I. Bdikin, M. Ferro, A. Kholkin, E. Titusa, and G. Goncalves, J. Mater. Chem. C 3, 11516 (2015).CrossRefGoogle Scholar
  4. 4.
    Q.-Q. Sun, Y.-J. Li, J.-L. He, W. Yang, P. Zhou, H.-L. Lu, S.-J. Ding, and D. W. Zhang, Appl. Phys. Lett. 102, 093104 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    H. Okumura, D. Martin, M. Malinverni, and N. Grandjean, Appl. Phys. Lett. 108, 072102 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    K. Zhang, H. Liang, Y. Liu, R. Shen, W. Guo, D. Wang, X. Xia, P. Tao, C. Yang, Y. Luo, and G. Du, Sci. Rep. 4, 6322 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. K. Khanna, Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies (Springer Nature, India, 2016).CrossRefGoogle Scholar
  8. 8.
    D. Kälblein, R. T. Weitz, H. J. Böttcher, F. Ante, U. Zschieschang, K. Kern, and H. Klauk, Nano Lett. 11, 5309 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    K. Gadani, D. Dhruv, Z. Joshi, H. Boricha, K. N. Rathod, M. J. Keshvani, N. A. Shah, and P. S. Solanki, Phys. Chem. Chem. Phys. 18, 17740 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, R. Rajavel, P. Deelman, and P. Fay, IEEE Microwave Wireless Compon. Lett. 21, 267 (2011).CrossRefGoogle Scholar
  11. 11.
    S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2007).Google Scholar
  12. 12.
    K. S. Rzhevkin, Physical Principles of Semiconductor Devices Operation (Mosk. Gos. Univ., Moscow, 1986) [in Russian].Google Scholar
  13. 13.
    S. Agarwal and E. Yablonovitch, IEEE Trans. Electron Dev. 61, 1488 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Yang, M. Wang, J. Ding, Z. Sun, L. Li, J. Huang, J. Liu, and J. Shao, ACS Appl. Mater. Interfaces 7, 21235 (2015).CrossRefGoogle Scholar
  15. 15.
    S. M. Hatch, J. Briscoe, and S. Dunn, Adv. Mater. 25, 867 (2013).CrossRefGoogle Scholar
  16. 16.
    K. Ding, Q. C. Hu, D. G. Chen, Q. H. Zheng, X. G. Xue, and F. Huang, IEEE Electron Dev. Lett. 33, 1750 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    F.-L. Schein, H. Wenckstern, and M. Grundmann, Appl. Phys. Lett. 102, 092109 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    C. Yang, M. Kneiß, F.-L. Schein, M. Lorenz, and M. Grundmann, Sci. Rep. 6, 21937 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    C. Xiong and R. Yao, Optik 126, 1951 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    Transparent Electronics: From Synthesis to Applications, Ed. by A. Facchetti and T. J. Marks (Wiley, Chichester, 2010).Google Scholar
  21. 21.
    C. Liu, M. Peng, A. Yu, J. Liu, M. Song, Y. Zhang, and J. Zhai, Nano Energy 26, 417 (2016).CrossRefGoogle Scholar
  22. 22.
    Z. Yang, M. Wang, S. Shukla, Y. Zhu, J. Deng, H. Ge, X. Wang, and Q. Xiong, Sci. Rep. 5, 11377 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    B. R. Sankapal, E. Goncalves, A. Ennaoui, and M. C. Lux-Steiner, Thin Solid Films 451–452, 128 (2004).CrossRefGoogle Scholar
  24. 24.
    R. N. Bulakhe, N. M. Shinde, R. D. Thorat, S. S. Nikam, and C. D. Lokhande, Curr. Appl. Phys. 13, 1661 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    B. R. Sankapal, A. Ennaoui, T. Guminskaya, T. Dittrich, W. Bohne, J. Ro[umlaut]hrich, E. Strub, and M. C. Lux-Steiner, Thin Solid Films 480–481, 142 (2005).CrossRefGoogle Scholar
  26. 26.
    S. L. Dhere, S. S. Latthe, C. Kappenstein, S. K. Mukherjee, and A. V. Rao, Appl. Surf. Sci. 256, 3967 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    N. P. Klochko, V. R. Kopach, G. S. Khrypunov, V. E. Korsun, N. D. Volkova, V. N. Lyubov, M. V. Kirichenko, A. V. Kopach, D. O. Zhadan, and A. N. Otchenashko, Semiconductors 51, 789 (2017)].ADSCrossRefGoogle Scholar
  28. 28.
    N. Yamada, R. Ino, and Y. Ninomiya, Chem. Mater. 28, 4971 (2016).CrossRefGoogle Scholar
  29. 29.
    Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, and J. Sui, Nano Energy 13, 554 (2015).CrossRefGoogle Scholar
  30. 30.
    Q. Yang, C. Hu, S. Wang, Y. Xi, and K. Zhang, J. Phys. Chem. C 117, 5515 (2013).CrossRefGoogle Scholar
  31. 31.
    N. Chahmat, A. Haddad, A. Ain-Souya, R. Ganfoudi, N. Attaf, M. S. Aida, and M. Ghers, J. Mod. Phys. 3, 1781 (2012).CrossRefGoogle Scholar
  32. 32.
    R. R. Ahire, B. R. Sankapal, and C. D. Lokhande, Mater. Res. Bull. 36, 199 (2001).CrossRefGoogle Scholar
  33. 33.
    N. P. Klochko, G. S. Khrypunov, Yu. A. Myagchenko, E. E. Melnychuk, V. R. Kopach, E. S. Klepikova, V. N. Lyubov, and A. V. Kopach, Semiconductors 48, 531 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    N. P. Klochko, E. S. Klepikova, G. S. Khrypunov, N. D. Volkova, V. R. Kopach, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors 49, 214 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    N. P. Klochko, K. S. Klepikova, I. I. Tyukhov, Y. O. Myagchenko, E. E. Melnychuk, V. R. Kopach, G. S. Khrypunov, V. M. Lyubov, A. V. Kopach, V. V. Starikov, and M. V. Kirichenko, Solar Energy 117, 1 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    N. P. Klochko, K. S. Klepikova, I. I. Tyukhov, Y. O. Myagchenko, E. E. Melnychuk, V. R. Kopach, G. S. Khrypunov, V. M. Lyubov, and A. V. Kopach, Solar Energy 120, 330 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    N. P. Klochko, E. S. Klepikova, V. R. Kopach, G. S. Khrypunov, Yu. A. Myagchenko, E. E. Melnychuk, V. N. Lyubov, and A. V. Kopach, Semiconductors 50, 352 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, New York, 2006).Google Scholar
  39. 39.
    T. Prasada Rao and M. C. Santhoshkumar, Appl. Surf. Sci. 255, 4579 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    A. Axelevitch and G. Golan, Facta Univ., Ser.: Electron. Energet. 26, 187 (2013).Google Scholar
  41. 41.
    V. R. Kopach, K. S. Klepikova, N. P. Klochko, I. I. Tyukhov, G. S. Khrypunov, V. E. Korsun, V. M. Lyubov, A. V. Kopach, R. V. Zaitsev, and M. V. Kirichenko, Solar Energy 136, 23 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    V. R. Kopach, E. S. Klepikova, N. P. Klochko, G. S. Khrypunov, V. E. Korsun, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors 51, 335 (2017).ADSCrossRefGoogle Scholar
  43. 43.
    Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, Ed. by C. W. Litton, D. C. Reynolds, and T. C. Collins (Wiley, Chichester, 2011).Google Scholar
  44. 44.
    H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009).CrossRefGoogle Scholar
  45. 45.
    M. Grundmann, F.-L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, and H. Wenckstern, Phys. Status Solidi A 210, 1671 (2013).CrossRefGoogle Scholar
  46. 46.
    C. Yang, M. Kneiß, M. Lorenz, and M. Grundmann, Proc. Natl. Acad. Sci. U.S.A. 113, 12929 (2016).ADSCrossRefGoogle Scholar
  47. 47.
    J. Wang, J. Li, and S.-S. Li, J. Appl. Phys. 110, 054907 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    G. I. Epifanov, Physical Principles of Microelectronics (Sov. Radio, Moscow, 1971) [in Russian].Google Scholar
  49. 49.
    K. V. Shalimova, Physics of Semiconductors (Energoatomizdat, Moscow, 1985) [in Russian].Google Scholar
  50. 50.
    Y. Wang, H.-B. Fang, R.-Q. Ye, Y.-Z. Zheng, N. Li, and X. Tao, RSC Adv. 6, 24430 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. P. Klochko
    • 1
  • V. R. Kopach
    • 1
  • G. S. Khrypunov
    • 1
  • V. E. Korsun
    • 1
  • V. M. Lyubov
    • 1
  • D. O. Zhadan
    • 1
  • A. N. Otchenashko
    • 1
  • M. V. Kirichenko
    • 1
  • M. G. Khrypunov
    • 1
  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations