Advertisement

Semiconductors

, Volume 52, Issue 8, pp 1004–1011 | Cite as

Specific Features of the Electrochemical Capacitance–Voltage Profiling of GaAs LED and pHEMT Structures with Quantum-Confined Regions

  • G. E. Yakovlev
  • M. V. Dorokhin
  • V. I. Zubkov
  • A. L. Dudin
  • A. V. Zdoroveyshchev
  • E. I. Malysheva
  • Yu. A. Danilov
  • B. N. Zvonkov
  • A. V. Kudrin
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 5 Downloads

Abstract

GaAs light-emitting (LED) and HEMT structures with δ-doped regions, InGaAs/GaAs quantum wells, and surface layers of InAs/GaAs quantum dots were studied by means of the electrochemical capacitance- voltage profiling technique. The concentration depth profiles of free charge carriers were obtained. Charges accumulated in quantum wells and quantum dots, as well as the doping levels of the emitter and δ layers were determined. The band structure and free carrier density distribution over the depth of the samples with different quantum well geometry were simulated. The specific features of electrochemical capacitance- voltage profiling in different heterostructure types are analyzed. A method of integration of capacitance- voltage curves at each etching stage was suggested. This method provides the efficient separation of responses from closely located layers, particularly the quantum well and δ layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim, Science (Washington, DC, U. S.) 324, 1530 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    V. I. Zubkov, O. V. Kucherova, A. V. Zubkova, J. E. Butler, V. A. Ilyin, A. V. Afanas’ev, S. A. Bogdanov, and A. L. Vikharev, J. Appl. Phys. 118, 145703 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    G. Cassabois, P. Valvin, and B. Gil, Nat. Photon. 10, 262 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    N. V. Kuznetsova, D. V. Nechaev, N. M. Shmidt, S. Yu. Karpov, N. V. Rzheutskii, V. E. Zemlyakov, V. Kh. Kaibyshev, D. Yu. Kazantsev, S. I. Troshkov, V. I. Egorkin, B. Ya. Ber, E. V. Lutsenko, S. V. Ivanov, and V. N. Jmerik, Tech. Phys. Lett. 42, 635 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    D. S. Frolov and V. I. Zubkov, Semicond. Sci. Technol. 31, 125013 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    I. A. Karpovich, B. N. Zvonkov, N. V. Baidus, S. V. Tikhov, and D. O. Filatov, Trends in Nanotechnology Research (Nova Science, New York, 2004).Google Scholar
  9. 9.
    J. L. Primus, K-H. Choi, A. Trampert, A. M. Yakunin, J. Ferre, J. H. Wolter, W. van Roy, and J. de Boeck, J. Cryst. Growth 280, 32 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    T. Mimura, Jpn. J. Appl. Phys. 44, 8263 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. Golio and J. Golio, RF and Microwave Passive and Active Technologies (CRC, Boca Raton, FL, 2007).CrossRefGoogle Scholar
  12. 12.
    Momcilo M. Pejovic Milic and M. Pejovic, Different Types of Field-Effect Transistors—Theory and Applications (InTech, Rijeka, Croatia, 2017).CrossRefGoogle Scholar
  13. 13.
    T. Ambridge and M. Faktor, J. Appl. Electrochem. 5, 319 (1975).CrossRefGoogle Scholar
  14. 14.
    V. I. Zubkov, Diagnostics of Semiconductor Nanoheterostructures by Admittance Spectroscopy Methods (Elmor, St. Petersburg, 2007) [in Russian].Google Scholar
  15. 15.
    G. E. Yakovlev, D. S. Frolov, A. V. Zubkova, E. E. Levina, V. I. Zubkov, A. V. Solomonov, O. K. Sterlyadkin, and S. A. Sorokin, Semiconductors 50, 320 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    V. Zubkov, O. Kucherova, D. Frolov, and A. Zubkova, Phys. Status Solidi C 10, 342 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    D. S. Frolov, G. E. Yakovlev, V. I. Zubkov, A. L. Dudin, A. V. Solomnikova, and E. S. Kunashik, Izv. SPbGETU LETI 2, 6 (2016).Google Scholar
  18. 18.
    M. V. Dorokhin, P. B. Demina, N. V. Baidus’, Yu. A. Danilov, B. N. Zvonkov, and M. M. Prokof’eva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 390 (2010).CrossRefGoogle Scholar
  19. 19.
    M. V. Dorokhin, A. V. Zdoroveishev, E. I. Malysheva, Yu. A. Danilov, B. N. Zvonkov, and A. E. Sholina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 511 (2012).CrossRefGoogle Scholar
  20. 20.
    M. V. Dorokhin, S. V. Zaitsev, A. V. Rykov, A. V. Zdoroveyshchev, E. I. Malysheva, Yu. A. Danilov, V. I. Zubkov, D. C. Frolov, G. E. Yakovlev, and A. V. Kudrin, Tech. Phys. 62, 1545 (2017).CrossRefGoogle Scholar
  21. 21.
    B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, E. S. Demidov, P. B. Demina, M. V. Dorokhin, Yu. N. Drozdov, V. V. Podol’skii, and M. V. Sapozhnikov, J. Opt. Technol. 75, 389 (2008).CrossRefGoogle Scholar
  22. 22.
    I. A. Karpovich, N. V. Baidus’, B. N. Zvonkov, S. V. Morozov, D. O. Filatov, and A. V. Zdoroveishev, Nanotechnology 12, 425 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    V. I. Zubkov, M. A. Melnik, A. V. Solomonov, E. O. Tsvelev, F. Bugge, M. Weyers, and G. Tränkle, Phys. Rev. B 70, 075312 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    G. Yakovlev, D. Frolov, and V. Zubkov, J. Phys.: Conf. Ser. 690, 012015 (2016).Google Scholar
  25. 25.
    V. I. Zubkov, Semiconductors 41, 320 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    V. I. Zubkov, I. N. Yakovlev, V. G. Litvinov, A. V. Ermachikhin, O. V. Kucherova, and V. N. Cherkasova, Semiconductors 48, 917 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    A. N. Petrovskaya and V. I. Zubkov, Semiconductors 43, 1328 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    E. Yu. Kozlovskii, Extended Abstract of Cand. Sci. Dissertation (Novgor. State Univ., Velik. Novgorod, 2013).Google Scholar
  29. 29.
    E. A. Tarasova, E. S. Obolenskaya, A. V. Hananova, S.V. Obolensky, V. E. Zemliakov, V. I. Egorkin, A. V. Nezhenzev, A. V. Saharov, A. F. Zazul’nikov, V. V. Lundin, E. E. Zavarin, and G. V. Medvedev, Semiconductors 50, 1574 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    A. L. Dudin, M. S. Mironova, G. E. Yakovlev, D. S. Frolov, I. V. Kogan, I. V. Shukov, V. I. Zubkov, and G. F. Glinskii, Prikl. Fiz., No. 3, 78 (2017).Google Scholar
  31. 31.
    I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, V. G. Mokerov, S. S. Shirokov, R. M. Imamov, and I. A. Subbotin, Semiconductors 42, 1084 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    M. S. Mironova, V. I. Zubkov, A. L. Dudin, and G. F. Glinskii, in Proceedings of the 25th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, 2017, p. 118.Google Scholar
  33. 33.
    R. Zucca, J. Appl. Phys. 48, 1987 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. E. Yakovlev
    • 1
  • M. V. Dorokhin
    • 2
  • V. I. Zubkov
    • 1
  • A. L. Dudin
    • 3
  • A. V. Zdoroveyshchev
    • 2
  • E. I. Malysheva
    • 2
  • Yu. A. Danilov
    • 2
  • B. N. Zvonkov
    • 2
  • A. V. Kudrin
    • 2
  1. 1.St. Petersburg State Electrotechnical University “LETI”St. PetersburgRussia
  2. 2.Physical–Technical Research InstituteLobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Svetlana-Rost JSCSt. PetersburgRussia

Personalised recommendations