Advertisement

Semiconductors

, Volume 52, Issue 8, pp 1061–1067 | Cite as

Degradation of the Photoluminescence of ZnTPP and ZnTPP–C60 Thin Films under Gamma Irradiation

  • N. M. Romanov
  • M. A. Elistratova
  • E. Lahderanta
  • I. B. Zakharova
Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • 16 Downloads

Abstract

Porphyrins and their fullerene complexes are promising materials for organic photovoltaic structures. However, the stability of the properties of organic components under hard radiation is poorly studied. Here, the influence of γ irradiation with medium (about 104 Gy) and large (107 Gy) doses on the photoluminescence of thin structurally perfect films of both pure porphyrin ZnTPP and ZnTPP/C60 composite films in the molar ratio of 1.3: 1 is investigated. It is shown that the intensity of the electronic radiative transition (626 nm) decreases under the effect of γ irradiation, and the dose dependence is threshold. The threshold dose is ~20 kGy for the ZnTPP films. The intensity of the electron-vibrational part of the spectral dependence of the PL (670–690 nm) for both types of samples decreased at initial irradiation doses and decreases less with a further increase in the irradiation dose than for the purely electron transition. The addition of a fullerene in nanocomposite films increases the threshold dose, after which the PL of the films started to degrade, by a factor of ~2.5. Herewith, the spectral components of the PL associated with the manifestation of the radiation transition of the fullerene C60 are more stable under γ irradiation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Jurow, A. E. Schuckman, J. D. Batteas, and C. M. Drain, Coord. Chem. Rev. 254, 2297 (2010).CrossRefGoogle Scholar
  2. 2.
    A. Suzuki, K. Nishimura, and T. Oku, Electronics 3, 112 (2014).CrossRefGoogle Scholar
  3. 3.
    M. G. Walter, A. B. Rudineb, and C. C. Wamser, J. Porphyr. Phthalocyan. 14, 759 (2010).CrossRefGoogle Scholar
  4. 4.
    M. A. Elistratova, I. B. Zakharova, N. M. Romanov, V. Yu. Panevin, and O. E. Kvyatkovskii, Semiconductors 50, 1191 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    I. B. Zakharova, V. M. Ziminov, N. M. Romanov, O. E. Kvyatkovskii, and T. L. Makarova, Phys. Solid State 56, 1064 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    H. M. Zeyada, M. M. Makhlouf, and M. A. Ali, Jpn. J. Appl. Phys. 55, 022601 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, Sov. Phys. Usp. 6, 67 (1963).ADSCrossRefGoogle Scholar
  8. 8.
    S. K. Sugunan, B. Robotham, R. P. Sloan, J. Szmytkowski, K. P. Ghiggino, M. F. Paige, and R. P. Steer, J. Phys. Chem. A 115, 12217 (2011).CrossRefGoogle Scholar
  9. 9.
    J. C. Ostrowski, K. Susumu, M. R. Robinson, M. J. Therien, and G. C. Bazan, Adv. Mater. 15, 1296 (2003).CrossRefGoogle Scholar
  10. 10.
    C. Trinh, M. T. Whited, A. Steiner, C. J. Tassone, M. F. Toney, and M. E. Thompson, Chem. Mater. 24, 2583 (2012).CrossRefGoogle Scholar
  11. 11.
    X. L. Zhang, J. W. Jiang, Y. T. Liu, S. T. Lou, C. L. Gao, and Q. Y. Jin, Sci. Rep. 6, 22756 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    I. B. Zakharova, M. A. Elistratova, N. M. Romanov, and O. E. Kvyatkovskii, Semiconductors 52 (2018, in press).Google Scholar
  13. 13.
    D. Sinha, T. Swu, S. P. Tripathy, R. Mishra, K. K. Dwivedi, and D. Fink, Radiat. Eff. Defects Solids 158, 531 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    A. Mizera, M. Manas, D. Manas, M. Stanek, J. Cerny, M. Bednarik, and M. Ovsik, Int. J. Math. Comput. Simul. 6, 584 (2012).Google Scholar
  15. 15.
    M. F. Zaki, J. Phys. D: Appl. Phys. 41, 175404 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    A. Tidjani and Y. Watanabe, J. Polym. Sci., Part A: Polym. Chem. 33, 1455 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    M. M. El-Nahass, H. M. Abd El-Khalek, and A. M. Nawar, Opt. Commun. 285, 1872 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    D. J. Y. S. Page, H. W. Bonin, V. T. Bui, and P. J. Bates, J. Appl. Polym. Sci. 86, 2713 (2002).CrossRefGoogle Scholar
  19. 19.
    M. M. El-Nahass, A. H. Ammar, A. A. Atta, A. A. M. Farag, and E. F. M. El-Zaidia, Opt. Commun. 284, 2259 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    F. Cataldo, G. Strazzulla, and S. Iglesias, Mon. Not. R. Astron. Soc. 394, 615 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    F. Cataldo, E. Lilla, O. Ursini, and G. Angelini, J. Radioanal. Nucl. Chem. 279, 31 (2009).CrossRefGoogle Scholar
  22. 22.
    S. P. Jovanovic, Z. M. Markovic, D. N. Kleut, D. D. Tosic, D. P. Kepic, M. T. Marinovic-Cincovic, and B. M. Todorovic-Markovic, Hem. Ind. 65, 479 (2011).CrossRefGoogle Scholar
  23. 23.
    V. A. Basiuk, G. Albarran, E. V. Basiuk, and J. M. Saniger, Adv. Space Res. 36, 173 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    F. Cataldoa, O. Ursinib, and G. Angelinib, Rad. Phys. Chem. 77, 742 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Todd, T. Zhua, F. Zhang, C. U. Zhang, A. D. Berger, and J. Xu, Chem. Mater. 16, 4533 (2004).CrossRefGoogle Scholar
  26. 26.
    M. A. Elistratova. I. B. Zakharova, and N. M. Romanov, J. Phys.: Conf. Ser. 586, 012002 (2015).Google Scholar
  27. 27.
    N. M. Romanov and I. B. Zakharova, NTV SPbPU, No. 2 (242), 9 (2016).Google Scholar
  28. 28.
    I. B. Zakharova, O. E. Kvyatkovskii, E. G. Donenko, and Yu. F. Biryulin, Phys. Solid State 51, 1976 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    A. L. Litvinov, D. V. Konarev, A. Yu. Kovalevsky, P. Coppensband, and R. N. Lyubovskaya, Cryst. Eng. Commun. 5 (25), 137 (2003).CrossRefGoogle Scholar
  30. 30.
    E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, Phys. Rev. Lett. 95, 196102 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Romanov
    • 1
    • 2
  • M. A. Elistratova
    • 3
  • E. Lahderanta
    • 2
  • I. B. Zakharova
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Lappeenranta University of TechnologyLappeenrantaFinland
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations