, Volume 52, Issue 8, pp 997–1003 | Cite as

Nonlinear Optical Properties of CdS/ZnS Quantum Dots in a High-Molecular-Weight Polyvinylpyrrolidone Matrix

  • A. S. KulaginaEmail author
  • S. K. Evstropiev
  • N. N. Rosanov
  • V. V. Vlasov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena


Sols containing core/shell CdS/ZnS semiconductor quantum dots are synthesized and their nonlinear properties, which are interesting for a large variety of applications in nanophotonics, are studied. The quantum dots produced are smaller in dimensions than the exciton Bohr radius and, therefore, exhibit a well-pronounced quantum-confinement effect. The nonlinear optical properties of low-concentration sols are studied upon exposure to laser pulses with an emission wavelength of 532 nm and a duration of 5 ns by the z-scan technique. The dependences of nonlinear optical coefficients on the concentration of CdS/ZnS quantum dots are obtained. The intensity dependence of two-photon absorption coefficients is presented. The dependence determines the boundary of the influence of high-order nonlinearities on the nonlinear transmittance of the samples. The mechanisms of optical limitation exhibited by sols, specifically, two-photon absorption, nonlinear refraction, and nonlinear scattering are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Venkatram, R. S. S. Kumar, and D. N. Rao, J. Appl. Phys. 100, 074309 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    C. Jing, X. Xu, X. Zhang, Z. Liu and J. Chu, J. Phys. D: Appl. Phys. 42, 075402 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, J. Opt. A: Pure Appl. Opt. 5, 409 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    J. He, W. Ji, G. H. Ma, S. H. Tang, E. S. W. Kong, S. Y. Chow, X. H. Zhang, Z. L. Hua, and J. L. Shi, J. Phys. Chem. B 109, 4373 (2005).CrossRefGoogle Scholar
  5. 5.
    H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, J. Chem. Phys. 125, 024707 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    J. Szeremeta, M. Nyk, D. Wawrzynczyk, and M. Samoc, Nanoscale (2013). doi 10.1039/c3nr33860fGoogle Scholar
  7. 7.
    P. Ghosh, E. Ramya, P. K. Mohapatra, D. Kushavah, D. N. Rao, P. Vasa, K. C. Rustagi, and B. P. Singh, Mater. Sci. (2016); ( Google Scholar
  8. 8.
    H. Du, G. Q. Xu, W. S. Chin, L. Huang, and W. Ji, Chem. Mater. 14, 4473 (2002).CrossRefGoogle Scholar
  9. 9.
    Yu. P. Rakovich, M. V. Artemyev, A. G. Rolo, M. I. Vasilevskiy, and M. J. M. Gomes, Phys. Status Solidi B 224, 319 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, W. X. Sun, Z. H. Zhang, and W. S. Chin, J. Appl. Phys. 95, 6381 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    R. E. Schwerzel, K. B. Spahr, J. P. Kurmer, V. E. Wood, and J. A. Jenkins, J. Phys. Chem. A 102, 5622 (1998).CrossRefGoogle Scholar
  12. 12.
    R. A. Al Aloosi and H. A. Jawad, Int. J. Adv. Res. Educ. Technol. 3, 146 (2016).Google Scholar
  13. 13.
    J. V. Antony, J. J. Pillai, P. Kurian, N. V. P. Nampoori, and G. E. Kochimoolayil, New J. Chem. (2017). doi 10.1039/C6NJ03665AGoogle Scholar
  14. 14.
    A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and V. E. W. Stryland, J. Opt. Soc. Am. B 9, 405 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    S. Vempati, Y. Ertas, and T. Uyar, J. Phys. Chem. C 117, 21609 (2013).CrossRefGoogle Scholar
  16. 16.
    J. I. Kim, J. Kim, J. Lee, D.-R. Jung, H. Kim, H. Choi, S. Lee, S. Byun, S. Kang, and B. Park, Nanoscale Res. Lett. 7, 482 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    M. Pattabi, B. S. Amma, and K. Manzoor, Mater. Res. Bull. 42, 828 (2007).CrossRefGoogle Scholar
  18. 18.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968).CrossRefGoogle Scholar
  19. 19.
    N. S. Kozhevnikova, A. S. Vorokh, and A. A. Uritskaya, Russ. Chem. Rev. 84, 225 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
  21. 21.
    M. R. Kim, Y.-M. Kang, and D.-J. Jang, J. Phys. Chem. C 111, 18507 (2007).CrossRefGoogle Scholar
  22. 22.
    O. Zelaya-Angel, J. J. Alvarado-Gil, R. Lozada-Morales, H. Vargas, and A. Ferreira da Silva, Appl. Phys. Lett. 64, 281 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    K. S. Evstrop’ev, Yu. A. Gatchin, S. K. Evstrop’ev, K. V. Dukel’skii, I. M. Kislyakov, N. A. Pegasova, and I. V. Bagrov, Opt. Spectrosc. 120, 415 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    L. Sarayanan, S. Diwakar, R. Mohankumar, A. Pandurangan, and R. Jayavel, Nanomater. Nanotechnol. 1, 42 (2001).Google Scholar
  25. 25.
    J. Wei, Springer Ser. Opt. Sci. 191, 25 (2015).Google Scholar
  26. 26.
    H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, Opt. Commun. 190, 351 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).Google Scholar
  28. 28.
    T. Ning, P. Gao, W. Wang, H. Lu, W. Fu, Y. Zhou, D. Zhang, X. Bai, E. Wang, and G. Yang, Phys. E (Amsterdam, Neth.) 41, 715 (2009).CrossRefGoogle Scholar
  29. 29.
    Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots Physics, Spectroscopy and Applications (Springer, Berlin, Heidelberg, New York, 2002).CrossRefGoogle Scholar
  30. 30.
    R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).Google Scholar
  31. 31.
    A. C. Panfutova, Extended Abstract of Cand. Sci. Dissertation (Vavilov State Optic. Inst., St. Petersburg, 2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Kulagina
    • 1
    • 2
    Email author
  • S. K. Evstropiev
    • 2
    • 3
  • N. N. Rosanov
    • 2
    • 3
    • 4
  • V. V. Vlasov
    • 2
  1. 1.St. Petersburg National Research Academic UniversityRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.Joint-Stock Company “Vavilov GOI”St. PetersburgRussia
  4. 4.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations