Advertisement

Semiconductors

, Volume 52, Issue 8, pp 957–960 | Cite as

Solid-Phase Reactions and Phase Transformations in a Nanoscale Bismuth/Selenium Film Structure

  • V. Ya. Kogai
  • G. M. Mikheev
Nonelectronic Properties of Semiconductors (Atomic Structure, Diffusion)

Abstract

Experimental results of a study concerned with solid-phase reactions and phase transformations in a Bi/Se nanoscale film structure under heat treatment in vacuum are presented. Nanocrystalline Bi2Se3, BiSe, and Bi4Se3 films are obtained for the first time by solid-phase synthesis at various ratios between the Bi and Se layer thicknesses. The phase-transformation temperatures at which Se, BiSe, and Bi4Se3 crystalline phases are formed are determined. The average crystallite sizes in the Bi2Se3, BiSe, and Bi4Se3 films are found to be 21, 23, and 33 nm, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Clevenger, B. Arcort, W. Ziegler, E. G. Colgan, Q. Z. Hong, F. M. d’Heurle, C. Cabral, Jr., T. A. Gallo, and J. M. E. Harper, J. Appl. Phys. 83, 90 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    V. Simic and Z. Marincovic, Mater. Sci. 33, 561 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    Thin Films: Interdiffusion and Reactions, Ed. by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), Chap. 7.Google Scholar
  4. 4.
    V. G. Myagkov and L. E. Bykova, Dokl. Akad. Nauk 354, 777 (1997).Google Scholar
  5. 5.
    V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, and V. K. Mal’tsev, Tech. Phys. 43, 1189 (1998).CrossRefGoogle Scholar
  6. 6.
    V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. I. Pol’ski, and F. V. Myagkov, JETP Lett. 71, 183 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    V. Ya. Kogai, A. V. Vakhrushev, and A. Yu. Fedotov, JETP Lett. 95, 454 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. Ya. Kogai and A. V. Vakhroushev, Tech. Phys. Lett. 39, 1044 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. Ya. Kogai, Tech. Phys. Lett. 40, 636 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    V. Ya. Kogai, Tech. Phys. 61, 461 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Guo, Z. J. Xu, H. C. Liu, B. Zhao, X. Q. Dai, H. T. He, J. N. Wang, H. J. Liu, W. K. Ho, and M. H. Xie, Appl. Phys. Lett. 102, 151604 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    P. Pramanik, R. N. Bhattacharya, and A. A. Mondal, J. Electrochem. Soc. 2, 1857 (1980).CrossRefGoogle Scholar
  13. 13.
    B. Pejova and I. Grozdanov, Thin Solid Films 408, 6 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    B. R. Sankapal, R. S. Mane, and C. D. Lokhande, Mater. Chem. Phys. 63, 230 (2000).CrossRefGoogle Scholar
  15. 15.
    L. He, F. Xiu, Y. Wang. A. V. Fedorov, G. Huang, X. Kou, M. Lang, W. P. Beyermann, J. Zou, and K. L. Wang, J. Appl. Phys. 109, 103702 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    K. J. John, B. Pradeep, and E. Mathai, Solid State Commun. 85, 879 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    V. Ya. Kogai, K. G. Mikheev, and G. M. Mikheev, Tech. Phys. Lett. 43, 701 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Mechanics, Ural BranchRussian Academy of SciencesIzhevskRussia

Personalised recommendations