Advertisement

Semiconductors

, Volume 52, Issue 5, pp 583–586 | Cite as

Polymer Composition Influence on Optical Properties of Laser-Generated Au Nanoparticles Based Nanocomposites

  • N. A. Zulina
  • U. S. Achor
  • K. I. Kniazev
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization
  • 12 Downloads

Abstract

Au nanoparticles (AuNPs) stable colloid solution were prepared by laser ablation and fragmentation in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning transmission electron microscopy (STEM) and were about 20 nm. Nanocomposites films were prepared from obtained stable colloid solution by UV-photocuring. To prepare solid polymer films different crosslinking diacrylates were used. Third-order nonlinear optical responses of prepared nanomaterials with different polymer matrix compositions were estimated by z-scan technique and compared.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Cury Camargo, K. G. Satyanarayana, and F. Wypych, Mater. Res. 12, 1 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Zare, K. Yop Rhee, and S.-J. Park, Int. J. Adhes. Adhesiv. 79, 111 (2017).CrossRefGoogle Scholar
  3. 3.
    G. Kichin, T. Weiss, H. Gao, J. Henzie, T. W. Odom, S. G. Tikhodeev, and H. Giessen, Phys. B: Condens. Matter 407, 4037 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    Y.-X. Zong and J.-B. Xia, J. Phys. D: Appl. Phys. 48, 355103 (2015).CrossRefGoogle Scholar
  5. 5.
    N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, J. Phys. Chem. C 118, 18010 (2014).CrossRefGoogle Scholar
  6. 6.
    T. Tsuji, K. Iryo, N. Watanabe, and M. Tsujia, Appl. Surf. Sci. 202, 80 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    V. Amendola, S. Scaramuzza, F. Carraro, and E. Cattaruzza, J. Colloid Interface Sci. 489, 18 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    I. Papagiannouli, P. Aloukos, D. Rioux, M. Meunier, and S. Couris, J. Phys. Chem. C 119, 6861 (2015).CrossRefGoogle Scholar
  9. 9.
    F. Mafune, J. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B 106, 7575 (2002).CrossRefGoogle Scholar
  10. 10.
    N. A. Zulina, I. M. Pavlovetc, M. A. Baranov, V. O. Kaliabin, and I. Yu. Denisyuk, Appl. Phys. A: Mater. Sci. Proces. 123, 39 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    N. A. Zulina, I. M. Pavlovetc, M. A. Baranov, and I. Y. Denisyuk, Opt. Laser Technol. 89, 41 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. Sheik-Bahae, A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, J. Quantum Electron. 26, 760 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    J. Burunkova, I. Csarnovics, I. Denisyuk, L. Daróczi, and S. Kökényesi, J. Non-Cryst. Solids 402, 200 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    E. Kymakis, G. D. Spyropoulos, R. Fernandes, G. Kakavelakis, A. G. Kanaras, and E. Stratakis, ACS Photon. 2, 714 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations