Molecular Beam Epitaxy of Materials Interfaces with Atomic Precision
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization
First Online:
Received:
- 5 Downloads
Abstract
In this contribution a few selected examples to engineer material interfaces in nanostructured solids with atomic precision by means of molecular beam epitaxy (MBE) are presented. The examples include 2D electron gas systems for quantum transport and mesoscopic physics, quantum cascade lasers, Sb-based materials, ferromagnet-semiconductor heterostructures, as well as oxide materials for electronics and quantum physics. Finally, the prospects to fabricate novel van-der-Waals heterostructures are briefly discussed.
Preview
Unable to display preview. Download preview PDF.
References
- 1.K. G. Günther, Thin Solid Films 88, 291 (1982).CrossRefGoogle Scholar
- 2.J. R. Arthur, Jr., J. Appl. Phys. 39, 4032 (1968).ADSCrossRefGoogle Scholar
- 3.A. Y. Cho, J. Appl. Phys. 41, 2780 (1970).ADSCrossRefGoogle Scholar
- 4.W. Shockley, Proc. IRE 40, 1289 (1952).CrossRefGoogle Scholar
- 5.H. Kroemer, Proc. IRE 45, 1535 (1957), Proc. IRE 51, 1782 (1963).CrossRefGoogle Scholar
- 6.W. P. McCray, Nat. Nanotechnol. 2, 259 (2007).ADSCrossRefGoogle Scholar
- 7.L. V. Keldish, Sov. Phys. Solid State 4, 1658 (1962).Google Scholar
- 8.L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
- 9.L. Pfeiffer and K. W. West, Physica E 20, 57 (2003).ADSCrossRefGoogle Scholar
- 10.V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, and M. Dolev, J. Cryst. Growth 311, 1658 (2009).ADSCrossRefGoogle Scholar
- 11.G. C. Gardner, S. Fallahi, J. D. Watson, and M. J. Manfra, J. Cryst. Growth 411, 71 (2016).ADSCrossRefGoogle Scholar
- 12.A. F. Kazarinov and R. F. Suris, Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
- 13.J. Faist, F. Capasso, D. L. Sivco, C. Sartori, A. L. Hutchinson, and A. Y. Cho, Science 264, 53 (1994).CrossRefGoogle Scholar
- 14.C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1325 (2001).CrossRefGoogle Scholar
- 15.Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature (London, U.K.) 402, 790 (1999).ADSCrossRefGoogle Scholar
- 16.J. Herfort, A. Trampert, and K. H. Ploog, Int. J. Mat. Res. 97, 1026 (2006).CrossRefGoogle Scholar
- 17.B. Jenichen, V. M. Kaganer, J. Herfort, D. K. Satapathy, H. P. Schönherr, W. Braun, and K. H. Ploog, Phys. Rev. B 72, 075329 (2005).ADSCrossRefGoogle Scholar
- 18.M. Hashimoto, A. Trampert, J. Herfort, and K. H. Ploog, J. Vac. Sci. Technol. B 25, 1453 (2007).CrossRefGoogle Scholar
- 19.B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. B. Ancona, Solid-State Electron. 49, 1875 (2005).ADSCrossRefGoogle Scholar
- 20.A. Rogalski, Infrared Phys. Technol. 50, 240 (2007).ADSCrossRefGoogle Scholar
- 21.A. Khoshakhlagh, E. Plis, S. Mayers, Y. D. Sharma, and S. Krishna, J. Cryst. Growth 311, 1901 (2009).ADSCrossRefGoogle Scholar
- 22.D. G. Schlom, S. Guha, and S. Datta, MRS Bull. 33, 1017 (2008).CrossRefGoogle Scholar
- 23.F. Grosse, S. Bokoch, S. Behnke, A. Proessdorf, M. Niehle, A. Trampert, W. Braun, and H. Riechert, J. Cryst. Growth 323, 95 (2011).ADSCrossRefGoogle Scholar
- 24.R. Ramesh and D. G. Schlom, MRS Bull. 33, 1006 (2008).CrossRefGoogle Scholar
- 25.G. Logvenov, A. Gozar, and I. Bosovic, Science 326, 699 (2009).ADSCrossRefGoogle Scholar
- 26.H. Boschker and J. Mannhart, Ann. Rev. Condens. Matter Phys. 8, 145 (2017).ADSCrossRefGoogle Scholar
- 27.A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).CrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018