Semiconductors

, Volume 52, Issue 5, pp 587–589 | Cite as

Luminescence Decay of Colloidal Quantum Dots and Stretched Exponential (Kohlrausch) Relaxation Function

XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization

Abstract

The room temperature non-exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms responsible for the shape of the decay. It is shown that a stretched exponential functional form of the luminescence decay can be understood in terms of long-range resonance energy transfer from quantum dots to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) or by contact quenching by quenchers (surface traps, molecules or quantum dots) distributed statistically (Poisson distribution) on the surface of the dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Jones and G. D. Scholes, J. Mater. Chem 20, 3533 (2010).CrossRefGoogle Scholar
  2. 2.
    M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, J. Phys. Chem. B 107, 13782 (2003).CrossRefGoogle Scholar
  3. 3.
    A. P. Litvin, P. S. Parfenov, E. V. Ushakova, T. A. Vorsina, A. L. Simões Gamboa, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 119, 17016 (2015).CrossRefGoogle Scholar
  4. 4.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys 315, 171 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    V. N. Soloviev, A. Eichhöfer, D. Fenske, and U. Banin, J. Am. Chem. Soc. 123, 2354 (2001).CrossRefGoogle Scholar
  6. 6.
    O. Schöps, N. le Thomas, U. Woggon, and M. V. Artemyev, J. Phys. Chem. B 110, 2074 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Sadhu and A. Patra, J. Phys. Chem. C 115, 16867 (2011).CrossRefGoogle Scholar
  8. 8.
    Al. L. Efros, Phys. Rev. B 46, 7448 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simões Gamboa, Ann. Phys. (Berlin) 528, 272 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    J. Klafter and A. Blumen, J. Chem. Phys. 80, 875 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    M. N. Berberan-Santos, E. N. Bodunov, and J. M. G. Martinho, Opt. Spectrosc. 81, 217 (1996).ADSGoogle Scholar
  12. 12.
    M. N. Berberan-Santos, E. N. Bodunov, and J. M. G. Martinho, Opt. Spectrosc. 87, 66 (1999).ADSGoogle Scholar
  13. 13.
    E. N. Bodunov and M. N. Berberan-Santos, Opt. Spectrosc. 119, 22 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    E. N. Bodunov, Yu. A. Antonov, and A. L. Simões Gamboa, J. Chem. Phys. 146, 114102 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    D. Feng, D. R. Yakovlev, V. V. Pavlov, A. V. Rodina, E. V. Shornikova, J. Mund, and M. Bayer, Nano Lett. 17, 2844 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsEmperor Alexander I St. Petersburg State Transport UniversitySt. PetersburgRussia
  2. 2.International Research and Education Centre for Physics of NanostructuresITMO UniversitySt. PetersburgRussia

Personalised recommendations