Advertisement

Semiconductors

, Volume 52, Issue 4, pp 442–446 | Cite as

Experimental Observation of Dyakonov Plasmons in the Mid-Infrared

  • O. Takayama
  • P. Dmitriev
  • E. Shkondin
  • O. Yermakov
  • M. Panah
  • K. Golenitskii
  • F. Jensen
  • A. Bogdanov
  • A. Lavrinenko
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Optoelectronics, Optical Properties
  • 36 Downloads

Abstract

In this work, we report on observation of Dyakonov plasmons at an interface with a hyperbolic metamaterial in the mid-IR. The hyperbolic metamaterial is implemented as a CMOS-compatible high aspect ratio grating structure with aluminium-doped ZnO (AZO) ridges grown by atomic layer deposition in deep trench silicon matrix. The dispersion of Dyakonov plasmons is characterized by the attenuated total reflection method in the Otto configuration. We demonstrate that Dyakonov plasmons propagate in a broad range of directions (a few tens of degrees) in contrast to the classical Dyakonov surface waves (about one tenth of degree). The obtained results provide useful guidelines for practical implementations of structures supporting Dyakonov plasmons in the mid-IR.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Polo and A. Lakhtakia, Laser Photon. Rev. 5, 234 (2011)CrossRefGoogle Scholar
  2. 2.
    A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science (Washington, DC, U. S.) 339 (6125), 1232009 (2013)CrossRefGoogle Scholar
  3. 3.
    O. Takayama, A. A. Bogdanov, and A. V. Lavrinenko, J. Phys.: Condens. Matter 29, 463001 (2017).ADSGoogle Scholar
  4. 4.
    J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, Phys. Rev. Lett. 100, 186804 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. Kawata, Y. Inouye, and P. Verma, Nat. Photon. 3, 388 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London, U.K.) 424 (6950), 824 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 8, 13 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    R. W. Wood, Philos. Mag. 4, 396 (1902).CrossRefGoogle Scholar
  10. 10.
    S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501 (2001).CrossRefGoogle Scholar
  11. 11.
    H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. Dyakonov, Sov. Phys. JETP 67, 714 (1988).Google Scholar
  13. 13.
    O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, Electromagnetics 28, 126 (2008).CrossRefGoogle Scholar
  14. 14.
    O. Takayama, L. Crasovan, D. Artigas, and L. Torner, Phys. Rev. Lett. 102, 043903 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    O. Takayama, D. Artigas, and L. Torner, Nat. Nanotechnol. 9, 419 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    D. Artigas and L. Torner, Phys. Rev. Lett. 94, 013901 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Jacob and E. E. Narimanov, Appl. Phys. Lett. 93, 221109 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, Phys. Rev. B 75, 241402 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science (Washington, DC, U. S.) 336 (6078), 205 (2012).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, Laser Photon. Rev. 7, 265 (2013)CrossRefGoogle Scholar
  21. 21.
    G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, Proc. Natl. Acad. Sci. USA 111, 7546 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. de Luca, and G. Strangi, Nat. Mater. 15, 621 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    R. Maas, J. Parsons, N. Engheta, and A. Polman, Nat. Photon. 7, 907 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature (London, U.K.) 522 (7555), 192 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, Appl. Phys. Lett. 94, 151105 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, Nat. Mater. 8, 867 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    C. T. Riley, J. S. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, Small 12, 892 (2016).CrossRefGoogle Scholar
  28. 28.
    P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).CrossRefGoogle Scholar
  29. 29.
    G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).CrossRefGoogle Scholar
  30. 30.
    Y. Zhong, S. D. Malagari, T. Hamilton, and D. M. Wasserman, J. Nanophoton. 9, 093791 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, Nano Lett. 9, 897 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, J. Vac. Sci. Technol., A 34, 031605 (2016).CrossRefGoogle Scholar
  33. 33.
    E. Shkondin, O. Takayama, M. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. Lavrinenko, Opt. Mater. Express 7, 1606 (2017).CrossRefGoogle Scholar
  34. 34.
    V. Agranovich and V. Kravtsov, Solid State Commun. 55, 85 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    O. Takayama, D. Artigas, and L. Torner, Opt. Lett. 37, 4311 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    P. Yeh, Surf. Sci. 96, 41 (1980).ADSCrossRefGoogle Scholar
  37. 37.
    P. Dmitriev, kitchenknif/pyatmm, V1.0.0-a1 (2017). https://doi.org/10.5281/zenodo.1041040Google Scholar
  38. 38.
    O. Takayama, E. Shkondin, A. Bogdanov, M. E. Aryaee Pahah, K. Golenitskii, P. A. Dmitriev, T. Repan, R. Malreanu, P. Belov, F. Jensen, and A. Lavrinenko, ACS Photon. (2017, in press)Google Scholar
  39. 39.
    N. Vasilantonakis, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, Laser Photon. Rev. 9, 345 (2015)CrossRefGoogle Scholar
  40. 40.
    A. A. Bogdanov and R. A. Suris, JETP Lett. 96, 49 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    K. Y. Golenitskii, K. L. Koshelev, and A. A. Bogdanov, Phys. Rev. A 94, 043815 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    K. L. Koshelev and A. A. Bogdanov, Phys. Rev. B 94, 115439 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    K. L. Koshelev and A. A. Bogdanov, Phys. Rev. B 92, 85305 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, Phys. Rev. B 91, 235423 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. Takayama
    • 1
  • P. Dmitriev
    • 2
  • E. Shkondin
    • 1
    • 3
  • O. Yermakov
    • 2
  • M. Panah
    • 2
  • K. Golenitskii
    • 4
  • F. Jensen
    • 3
  • A. Bogdanov
    • 2
    • 4
  • A. Lavrinenko
    • 1
    • 2
  1. 1.DTU Fotonik—Department of Photonics EngineeringTechnical University of Denmark, Kgs. LyngbyCopenhagenDenmark
  2. 2.Department of Nanophotonics and MetamaterialsITMO UniversitySt. PetersburgRussia
  3. 3.DTU Danchip—National Center for Micro- and NanofabricationTechnical University of Denmark, Kgs. LyngbyCopenhagenDenmark
  4. 4.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations