Semiconductors

, Volume 52, Issue 4, pp 511–513 | Cite as

Red Single-Photon Emission from InAs/AlGaAs Quantum Dots

  • M. V. Rakhlin
  • K. G. Belyaev
  • G. V. Klimko
  • I. S. Mukhin
  • S. V. Ivanov
  • A. A. Toropov
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Quantum Wells, Quantum Wires, Quantum Dots, and Band Structure
  • 5 Downloads

Abstract

We report on single-photon emission of InAs/AlGaAs self-assembled quantum dots (QDs) grown by molecular beam epitaxy. By varying the growth conditions the QDs luminescence could be tuned over a wide wavelength range from 0.64 to 1 μm, including red part of the visible spectrum. Emission properties of individual QDs are investigated by micro-photoluminescence (μ-PL) spectroscopy using 500-nm-size etched mesa structures. Autocorrelation functions of photons from single QDs, measured in the wide spectral range demonstrate antibunching effect at zero delay time with a value of g(2)(0) ~ 0.17 that is a clear evidence of non-classical light.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Santori, D. Fattal, J. Vukovi, G. S. Solomon, and Y. Yamamoto, Nature (London, U.K.) 419, 594 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kummel, Appl. Phys. Lett. 100, 061114 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    J. Suffczynski, T. Kazimierczuk, M. Goryca, B. Piechal, A. Trajnerowicz, K. Kowalik, P. Kossacki, A. Golnik, K. P. Korona, M. Nawrocki, J. A. Gaj, and G. Karchzewski, Phys. Rev. B 74, 085319 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. J. Holmes, K. Choit, S. Kako, M. Arit, and Y. Arakawa, Nano Lett. 14, 982 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    C. Santori, S. Gotzinger, Y. Yamamoto, S. Kako, K. Hoshino, and Y. Arakawa, Appl. Phys. Lett. 87, 051916 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, Appl. Phys. Lett. 82, 1508 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    J. H. Kim, T. Cai, C. J. K. Richardson, R. P. Leavitt, and E. Waks, Optica 3, 577 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 7 (1999).CrossRefGoogle Scholar
  9. 9.
    J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, and M. Hopkinson, Phys. Rev. B 66, 153316 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    S. C. M. Grijseels, J. van Bree, P. M. Koenradd, A. A. Toropov, G. V. Klimko, S. V. Ivanov, C. E. Pryor, and A. Yu. Silov, J. Lumin. 176, 95 (2016).CrossRefGoogle Scholar
  11. 11.
    G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, S. Tatarenko, K. Kheng, and J. Ph. Poizat, Phys. Rev. B 80, 085310 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Opt. Lett. 25, 1294 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Rakhlin
    • 1
  • K. G. Belyaev
    • 1
  • G. V. Klimko
    • 1
  • I. S. Mukhin
    • 2
    • 3
  • S. V. Ivanov
    • 1
  • A. A. Toropov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Academic University Russian Academy of ScienceSt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations