Semiconductors

, Volume 52, Issue 4, pp 478–484 | Cite as

High Temperature Quantum Kinetic Effects in Silicon Nanosandwiches

  • N. T. Bagraev
  • L. E. Klyachkin
  • V. S. Khromov
  • A. M. Malyarenko
  • V. A. Mashkov
  • T. V. Matveev
  • V. V. Romanov
  • N. I. Rul’
  • K. B. Taranets
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Transport In Heterostructures
  • 5 Downloads

Abstract

The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. F. Ezawa, Quantum Hall Effects: Recent Theoretical and Experimental Developments (World Scientific, Singapore, 2013).CrossRefGoogle Scholar
  2. 2.
    J. P. Eisenstein, H. L. Stormer, V. Narayanamurti, A. Y. Cho, A. C. Gossard, and C. W. Tu, Phys. Rev. Lett. 55, 875 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    G. Landwehr, J. Gerschütz, S. Oehling, A. Pfeuffer-Jeschke, V. Latussek, and C. R. Becker, Physica E 6, 713 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Zyuzin and D. Loss, Phys. Rev. B 90, 125443 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).ADSGoogle Scholar
  8. 8.
    N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, in Superconductor, Ed. by A. M. Luiz (SCIYO, Croatia, (2010), Chap. 4.Google Scholar
  9. 9.
    N. T. Bagraev, V. K. Ivanov, L. E. Klyachkin, and I. A. Shelykh, Phys. Rev. B 70, 155315 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).CrossRefGoogle Scholar
  11. 11.
    R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    R. B. Laughlin, Phys. Rev. B 27, 3383 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).Google Scholar
  14. 14.
    V. T. Dolgopolov, Phys. Usp. 57, 105 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    R. E. Peale, Y. Mochizuki, H. Sun, and G. D. Watkins, Phys. Rev. B 45, 5933 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    H. Ch. Alt, Phys. Rev. Lett. 65, 3421 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    N. T. Bagraev, J. Phys. (Paris) I 1, 1511 (1991).Google Scholar
  20. 20.
    T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhowen, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    A. Yacoby, H. L. Stormer, N. S. Wingreen, L.N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).ADSCrossRefGoogle Scholar
  26. 26.
    M. Rosenau da Costa, I. A. Shelykh, and N. T. Bagraev, Phys. Rev. B 76, R201302 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. T. Bagraev
    • 1
    • 2
  • L. E. Klyachkin
    • 1
  • V. S. Khromov
    • 1
  • A. M. Malyarenko
    • 1
  • V. A. Mashkov
    • 2
  • T. V. Matveev
    • 2
  • V. V. Romanov
    • 2
  • N. I. Rul’
    • 1
    • 2
  • K. B. Taranets
    • 2
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations