Advertisement

Semiconductors

, Volume 52, Issue 2, pp 242–247 | Cite as

Physical Principles of Self-Consistent Simulation of the Generation of Interface States and the Transport of Hot Charge Carriers in Field-Effect Transistors Based on Metal–Oxide–Semiconductor Structures

  • S. E. Tyaginov
  • A. A. Makarov
  • M. Jech
  • M. I. VexlerEmail author
  • J. Franco
  • B. Kaczer
  • T. Grasser
Physics of Semiconductor Devices

Abstract

A detailed simulation of degradation (caused by hot charge carriers) based on self-consistent consideration of the transport of charge carriers and the generation of defects at the SiO2/Si interface is carried out for the first time. The model is tested using degradation data obtained with decananometer n-type-channel field-effect transistors. It is shown that the mutual influence of the above aspects is significant and their independent simulation gives rise to considerable quantitative errors. In calculations of the energy distribution for charge carriers, the actual band structure of silicon and such mechanisms as impact ionization, scattering at an ionized impurity, and also electron–phonon and electron–electron interactions are taken into account. At the microscopic level, the generation of defects is considered as the superposition of single-particle and multiparticle mechanisms of breakage of the Si–H bond. A very important applied aspect of this study is the fact that our model makes it possible to reliably assess the operating lifetime of a transistor subjected to the effects of “hot” charge carriers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. McMahon, A. Haggag, and K. Hess, IEEE Trans. Nanotech. 2, 33 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent, in Proceedings of the International Reliability Physics Symposium IRPS, 2009, p. 531.Google Scholar
  3. 3.
    K. Hess, L. F. Register, B. Tuttle, J. Lyding, and I. C. Kizilyalli, Physica E 3, 1 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    International Technology Roadmap for Semiconductors ITRS (2015), Chap.5.Google Scholar
  5. 5.
    S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, P. Packan, P. Nayak, S. Ramey, and S. Natarajan, in Proceedings of the 2015 IEEE International Reliability Physics Symposium, 2015, p. 2F.2.1.Google Scholar
  6. 6.
    S. Ramey, Y. Lu, I. Meric, S. Mudanai, S. Novak, C. Prasad, and J. Hicks, in Proceedings of the 2015 IEEE International Integrated Reliability Workshop IIRW, 2015, p. 56.CrossRefGoogle Scholar
  7. 7.
    C. R. Helms and E. H. Poindexter, Rep. Prog. Phys. 57, 791 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    A. Bravaix and V. Huard, in Proceedings of the European Symposium Reliability of Electron Devices Failure Physics and Analysis ESREF, 2010, p. 1267.Google Scholar
  9. 9.
    S. Rauch and G. L. Rosa, in Proceedings of the International Reliability Physics Symposium IRPS, 2010.Google Scholar
  10. 10.
    S. Tyaginov and T. Grasser, in Proceedings of the International Integrated Reliability Workshop IIRW, 2012, p. 206.Google Scholar
  11. 11.
    W. McMahon and K. Hess, J. Comput. Electron. 1, 395 (2002).CrossRefGoogle Scholar
  12. 12.
    K. L. Brower, Phys. Rev. B 42, 3444 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    S. E. Tyaginov, I. A. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. M. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser, in Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits IPFA, 2010.Google Scholar
  14. 14.
    M. Bina, S. Tyaginov, J. Franco, Y. Wimmer, D. Osinstev, B. Kaczer, T. Grasser, et al., IEEE Trans. Electron Dev. 61, 3103 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    S. Tyaginov, M. Jech, J. Franco, P. Sharma, B. Kaczer, and T. Grasser, IEEE Electron Dev. Lett. 37, 84 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    P. Sharma, S. Tyaginov, M. Jech, Y. Wimmer, F. Rudolf, H. Enichlmair, J.-M. Park, H. Ceric, and T. Grasser, Solid State Electron. 115 (pt. B), 185 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser, in Proceedings of the International Electron Devices Meeting IEDM, 2012, p. 713.Google Scholar
  18. 18.
    S. Tyaginov, I. Starkov, C. Jungemann, H. Enichlmair, J. M. Park, and T. Grasser, in Proceedings of the European Solid-State Device Research Conference ESSDERC, 2011, p. 151.Google Scholar
  19. 19.
    S. Tyaginov, I. Starkov, O. Triebl, H. Enichlmair, C. Jungemann, J. M. Park, H. Ceric, and T. Grasser, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD, 2011, p. 123.Google Scholar
  20. 20.
    S. E. Rauch, F. J. Guarin, and G. LaRosa, IEEE Electron Dev. Lett. 19, 463 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    P. Sharma, S. Tyaginov, S. E. Rauch, J. Franco, A. Makarov, M. I. Vexler, B. Kaczer, and T. Grasser, IEEE Electron Dev. Lett. 38, 160 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    S. Tyaginov, I. Starkov, H. Enichlmair, J. M. Park, C. Jungemann, and T. Grasser, ECS Trans. 35, 321 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. E. Tyaginov
    • 1
    • 2
  • A. A. Makarov
    • 2
  • M. Jech
    • 2
  • M. I. Vexler
    • 1
    Email author
  • J. Franco
    • 3
  • B. Kaczer
    • 3
  • T. Grasser
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.TU Vienna, Institute for MicroelectronicsViennaAustria
  3. 3.IMECLeuvenBelgium

Personalised recommendations