Advertisement

Semiconductors

, Volume 51, Issue 4, pp 444–448 | Cite as

Quantum-well charge and voltage distribution in a metal–insulator–semiconductor structure upon resonant electron Tunneling

  • M. I. VexlerEmail author
  • Yu. Yu. Illarionov
  • I. V. Grekhov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 26 Downloads

Abstract

The prerequisites for electron storage in the quantum well of a metal–oxide–p +-Si resonant-tunneling structure and the effect of the stored charge on the voltage distribution are theoretically investigated. Systems with SiO2, HfO2, and TiO2 insulators are studied. It is demonstrated that the occurrence of a charge in the well in the case of resonant transport can be expected in structures on substrates with an acceptor concentration from (5–6) × 1018 to (2–3) × 1019 cm–3 in the range of oxide thicknesses dependent on this concentration. In particular, the oxide layer thickness in the structures with SiO2/p +-Si(1019 cm–3) should exceed ~3 nm. The electron density in the well can reach ~1012 cm–2 and higher. However, the effect of this charge on the electrostatics of the structure becomes noticeable only at relatively high voltages far above the activation of resonant transport through the first subband.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Kareva and M. I. Vexler, Semiconductors 47, 1084 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    M. I. Vexler, G. G. Kareva, Yu. Yu. Illarionov, and I. V. Grekhov, Tech. Phys. Lett. 42, 1090 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    B. Eitan, P. Pavan, I. Bloom, A. Efraim, A. Frommer, and D. Finzi, IEEE Electron Dev. Lett. 22, 543 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    A. Schenk, Advanced Physical Models for Silicon Device Simulations (Springer, Wien, New York, 1998), Chap. 5.CrossRefzbMATHGoogle Scholar
  5. 5.
    M. I. Vexler, S. E. Tyaginov, Yu. Yu. Illarionov, Yew Kwang Sing, Ang Diing Shenp, V. V. Fedorov, and D. V. Isakov, Semiconductors 47, 686 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    T. Ando, A. Fowler, and F. Stern, Electronic Properties of Two-Dimensional Systems (Mir, Moscow, 1985); Rev. Mod. Phys. 54, 437 (1982), Chap. 3.Google Scholar
  7. 7.
    J. Robertson and R. W. Wallace, Mater. Sci. Eng. Res. 88, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Monaghan, P. K. Hurley, K. Cherkaoui, M. A. Negara, and A. Schenk, Solid State Electron. 53, 438 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    B. Govoreanu, P. Blomme, K. Henson, J. van Houdt, and K. de Meyer, in Proceedings of the Conference on Simulation of Semiconductor Processes and Devices SISPAD, Boston, USA, Sept. 3–5, 2003, p. 287.Google Scholar
  10. 10.
    Y. Rawal, S. Ganguly, and M. S. Baghini, Active Passive Electron. Compon. 2012, 694105 (2012).CrossRefGoogle Scholar
  11. 11.
    L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, IEEE Electron Dev. Lett. 21, 181 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    L. Zhou, R. C. Hoffmann, Z. Zhao, J. Bill, and F. Aldinger, Thin Solid Films 516, 7661 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. I. Vexler
    • 1
    Email author
  • Yu. Yu. Illarionov
    • 1
    • 2
  • I. V. Grekhov
    • 1
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Technische Universität WienInstitut für MikroelektronikViennaAustria

Personalised recommendations