, Volume 51, Issue 3, pp 310–317 | Cite as

Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

  • G. B. GalievEmail author
  • M. M. Grekhov
  • G. Kh. Kitaeva
  • E. A. Klimov
  • A. N. Klochkov
  • O. S. Kolentsova
  • V. V. Kornienko
  • K. A. Kuznetsov
  • P. P. Maltsev
  • S. S. Pushkarev
Spectroscopy, Interaction with Radiation


The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In0.53Ga0.47As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In0.53Ga0.47As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds that from similar layers formed on the (100) InP substrates by a factor of 3–5.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. P. Prieto, S. A. B. Vizcara, A. S. Somintac, A. A. Salvador, E. S. Estacio, C. T. Que, K. Yamamoto, and M. Tani, J. Opt. Soc. Am. B 31, 291 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    A. Krotkus, J. Phys. D: Appl. Phys. 43, 273001 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. Krotkus, K. Bertulis, L. Dapkus, U. Olin, and S. Marcinkevičius, Appl. Phys. Lett. 75, 3336 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    Toshihiko Ouchi and Kousuke Kajiki, US Patent No. 8835853 (2014).Google Scholar
  5. 5.
    J.-L. Coutaz, J.-F. Roux, A. Gaarder, S. Marcinkevicius, J. Jasinski, K. Korona, M. Kaminska, K. Bertulis, and A. Krotkus, in Proceedings of the 11th International Semiconducting and Insulating Material Conference, Canberra, Australia, July 3–7, 2000, p. 89.Google Scholar
  6. 6.
    P. Specht, S. Jeong, H. Sohn, M. Luysberg, A. Prasad, J. Gebauer, R. Krause-Rehberg, and E. R. Weber, Mater. Sci. Forum 258–263, 251 (1997).Google Scholar
  7. 7.
    J. Maguire, R. Murray, R. C. Newman, R. B. Beall, and J. J. Harris, Appl. Phys. Lett. 50, 516 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    E. F. Schubert, J. E. Cunningham, and W. T. Tsang, Solid State Commun. 63, 591 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Okano, H. Seto, H. Katahama, S. Nishine, I. Fujimoto, and T. Suzuki, Jpn. J. Appl. Phys. 28, L151 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    F. Piazza, L. Pavesi, M. Henini, and D. Johnston, Semicond. Sci. Technol. 7, 1504 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    L. Pavesi, F. Piazza, M. Henini, and I. Harrison, Semicond. Sci. Technol. 8, 167 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    M. Henini, N. Galbiati, E. Grilli, M. Guzzi, and L. Pavesi, J. Cryst. Growth 175–176, 1108 (1997).CrossRefGoogle Scholar
  13. 13.
    G. B. Galiev, V. E. Kaminski, V. G. Mokerov, and L. E. Velikhovski, Semiconductors 35, 415 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    G. B. Galiev, V. Kaminskii, D. Milovzorov, L. Velihovskii, and V. G. Mokerov, Semicond. Sci. Technol. 17, 120 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    G. B. Galiev, E. A. Klimov, M. M. Grekhov, S. S. Pushkarev, D. V. Lavrukhin, and P. P. Maltsev, Semiconductors 50, 195 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    D. V. Lavrukhin, A. E. Yachmenev, A. S. Bugaev, G. B. Galiev, E. A. Klimov, R. A. Khabibullin, D. S. Ponomarev, and P. P. Maltsev, Semiconductors 49, 911 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    S. Adashi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, New York, 2009).CrossRefGoogle Scholar
  18. 18.
    J. Mangeney, F. Meng, D. Gacemi, E. Peytavit, J. F. Lampin, and T. Akalin, Appl. Phys. Lett. 97, 161109 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J. F. Lampin, and P. Mounaix, Opt. Express 15, 8943 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    B. Sartorius, H. Roehle, H. Kunzell, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, Opt. Express 16, 9565 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91, 011102 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, Appl. Phys. Lett. 96, 194104 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, Appl. Phys. Lett. 92, 131117 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    M. Sukhotin, E. R. Brown, D. Driscoll, M. Hanson, and A. C. Gossard, Appl. Phys. Lett. 83, 3921 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, Appl. Phys. Lett. 78, 1703 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    M. D. Vilisova, I. V. Ivonin, L. G. Lavrent’eva, S. V. Subach, M. P. Yakubenya, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, N. A. Bert, Yu. G. Musikhin, and V. V. Chaldyshev, Semiconductors 33, 824 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    B. K. Vainshtein, Modern Crystallography (Nauka, Moscow, 1979), Vol. 1 [in Russian].Google Scholar
  28. 28.
    M. Missous, Microelectron. J. 27, 393 (1996).CrossRefGoogle Scholar
  29. 29.
    C. Zhang, B. Jin, J. Chen, P. Wu, and M. Tonouchi, J. Opt. Soc. Am. B 26 (9), A1 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. B. Galiev
    • 1
    Email author
  • M. M. Grekhov
    • 3
  • G. Kh. Kitaeva
    • 2
  • E. A. Klimov
    • 1
  • A. N. Klochkov
    • 1
  • O. S. Kolentsova
    • 3
  • V. V. Kornienko
    • 2
  • K. A. Kuznetsov
    • 2
  • P. P. Maltsev
    • 1
  • S. S. Pushkarev
    • 1
  1. 1.Institute of Ultra-High Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations