, Volume 51, Issue 2, pp 158–162 | Cite as

Field diffusion in disordered organic materials under conditions of occupied deep states

  • V. R. Nikitenko
  • A. Yu. Kudrov
Electronic Properties of Semiconductors


A simple analytical model of the field-diffusion coefficient is developed for moderate carrier concentrations. Hopping transport is described by the multiple-trapping model based on the transport-level concept. A continuity equation with a diffusion coefficient depending on carrier concentration is obtained, the time dependence of the field-diffusion coefficient under non-steady-state conditions is found. The time intervals in which deep state population affects the mobility and diffusion coefficient under conditions of time-of-flight experiments are estimated. It is shown that the field-diffusion coefficient increases in a long time interval while the mobility is unchanged, which is reminiscent of a similar case of nonequilibrium initial carrier generation at the low-concentration limit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bässler, Phys. Status Solidi B 175, 15 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    S. Baranovskii, Phys. Status Solidi B 251, 487 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    P. M. Borsenberger, R. Richert, and H. Bässler, Phys. Rev. B 47, 4289 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Rudenko and V. I. Arkhipov, Phil. Mag. B 45, 177 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    A. Hirao and H. Nishizawa, Phys. Rev. B 56, R2904 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    V. R. Nikitenko, H. von Seggern, and H. Bässler, J. Phys.: Condens. Matter 19, 136210 (2007).ADSGoogle Scholar
  7. 7.
    A. V. Nenashev, F. Jansson, S. D. Baranovskii, R. Österbacka, A. V. Dvurechenskii, and F. Gebhard, Phys. Rev. B 81, 115204 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    Ling Li, Nianduan Lu, Ming Liu, and H. Bässler, Phys. Rev. B 90, 214107 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    S. D. Baranovskii, I. P. Zvyagin, H. Cordes, S. Yamasaki, and P. Thomas, Phys. Status Solidi B 230, 281 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Arkhipov, E. V. Emelianova, and G. J. Adriaenssens, Phys. Rev. B 64, 125125 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    V. R. Nikitenko and M. N. Strikhanov, J. Appl. Phys. 115, 073704 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. R. Nikitenko and A. P. Tyutnev, Semiconductors 41, 1101 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    I. P. Zvyagin, Kinetic Phenomena in Disordered Semiconductors (Mosc. Gos. Univ., Moscow, 1984) [in Russian].Google Scholar
  14. 14.
    V. I. Arkhipov, P. Heremans, E. V. Emelianova, and G. J. Adriaenssens, Appl. Phys. Lett. 79, 4154 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 72, 155206 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    V. R. Nikitenko and H. von Seggern, J. Appl. Phys. 102, 103708 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    J. Cottaar, R. Coehoorn, and P. A. Bobbert, Phys. Rev. B 85, 245205 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    C. Tanase, P. W. M. Blom, D. M. de Leeuw, and E. J. Meijer, Phys. Status Solidi A 201, 1236 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations