, Volume 51, Issue 2, pp 189–192 | Cite as

Electroreflectance spectra from multiple InGaN/GaN quantum wells in the nonuniform electric field of a p–n junction

  • L. P. Avakyants
  • A. E. Aslanyan
  • P. Yu. BokovEmail author
  • K. Yu. Polozhentsev
  • A. V. Chervyakov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena


A line at E = 2.77 eV (with a width of Γ = 88 meV) related to interband transitions in the region of multiple quantum wells in the active region is detected in the electroreflectance spectra of the GaN/InGaN/AlGaN heterostructure. As the modulation bias is reduced from 2.9 to 0.4 V, the above line is split into two lines with energies of E 1 = 2.55 eV and E 2 = 2.75 eV and widths of Γ1 = 66 meV and Γ2 = 74 meV, respectively. The smaller widths of separate lines indicate that these lines are caused by interband transitions in particular quantum wells within the active region. The difference between the interband transition energies E 1 and E 2 in identical quantum wells in the active region is related to the fact that the quantum wells are in an inhomogeneous electric field of the p–n junction. The magnitudes of the electric-field strengths in particular quantum wells in the active region of the heterostructure are estimated to be 1.6 and 2.2 MV/cm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Shubert, Light Emitting Diodes (Fizmatlit, Moscow, 2008; Cambridge Univ. Press, Cambridge, 2006).CrossRefGoogle Scholar
  2. 2.
    N. F. Gardner, G. O. Mueller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    H. Zhao, L. Guangyu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tans, Opt. Express 19 (S4), 991 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    L. P. Avakyants, M. L. Badgutdinov, P. Yu. Bokov, A. V. Chervyakov, S. S. Shirokov, A. E. Yunovich, A. A. Bogdanov, E. D. Vasil’eva, D. A. Nikolaev, and A. V. Feopentov, Semiconductors 41, 1060 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, Appl. Phys. Lett. 92, 053502 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    L. P. Avakyants, P. Yu. Bokov, and A. V. Chervyakov, Tech. Phys. 50, 1316 (2005).CrossRefGoogle Scholar
  7. 7.
    R. J. Kaplar, S. R. Kurtz, D. D Koleske, and A. J. Fischer, Appl. Phys. Lett. 95, 4905 (2004).Google Scholar
  8. 8.
    T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 1691 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    D. Aspnes, Surf. Sci. 37, 418 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    M. E. Aumer, S. F. le Boeuf, B. F. Moody, and S. M. Bedair, Appl. Phys. Lett. 79, 3803 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    M. Feneberg and K. Thonke, J. Phys.: Condens. Matter 19, 403201 (2007).Google Scholar
  14. 14.
    L. P. Avakyants, P. Yu. Bokov, A. V. Chervyakov, A. E. Yunovich, E. D. Vasileva, and B. S. Yavich, Phys. Status Solidi C 7, 1863 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. P. Avakyants
    • 1
  • A. E. Aslanyan
    • 1
  • P. Yu. Bokov
    • 1
    Email author
  • K. Yu. Polozhentsev
    • 1
  • A. V. Chervyakov
    • 1
  1. 1.Moscow State University (Faculty of Physics)MoscowRussia

Personalised recommendations