Semiconductors

, Volume 50, Issue 12, pp 1619–1621 | Cite as

Surface passivation of GaAs nanowires by the atomic layer deposition of AlN

  • I. V. Shtrom
  • A. D. Bouravleuv
  • Yu. B. Samsonenko
  • A. I. Khrebtov
  • I. P. Soshnikov
  • R. R. Reznik
  • G. E. Cirlin
  • V. Dhaka
  • A. Perros
  • H. Lipsanen
XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016
  • 53 Downloads

Abstract

It is shown that the atomic layer deposition of thin AlN layers can be used to passivate the surface states of GaAs nanowires synthesized by molecular-beam epitaxy. Studies of the optical properties of samples by low-temperature photoluminescence measurements shows that the photoluminescence-signal intensity can be increased by a factor of up to five by passivating the nanowires with a 25-Å-thick AlN layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Bessolov and M. V. Lebedev, Semiconductors 32, 1141 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    B. I. Bednyi, Soros. Obrazov. Zh. 7, 114 (1998).Google Scholar
  3. 3.
    V. Dhaka, A. Perros, S. Naureen, N. Shahid, H. Jiang, J.-P. Kakko, T. Haggren, E. Kauppinen, A. Srinivasan, and H. Lipsanen, AIP Adv. 6, 015016 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    P. A. Alekseev, M. S. Dunaevskiy, V. P. Ulin, T.V.Lvova, D. O. Filatov, A. V. Nezhdanov, A. I. Mashin, and V. L. Berkovits, Nano Lett. 15, 63 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    N. Tajik, C. M. Haapamaki, and R. R. LaPierre, Nanotechnology 23, 315703 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, and E. I. Kauppinen, Appl. Phys. Lett. 90, 033101 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Senichev, V. G. Talalaev, I. V. Shtrom, H. Blumtritt, G. E. Cirlin, J. Schilling, and Ch. P. Werner, ACS Photon. 1, 1099 (2014).CrossRefGoogle Scholar
  8. 8.
    L. V. Titova, Th. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, H. J. Joyce, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 89, 173126 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    V. Dhaka, J. Oksanen, H. Jiang, T. Haggren, A. Nykänen, R. Sanatinia, J.-P. Kakko, T. Huhtio, M. Mattila, J. Ruokolainen, S. Anand, E. Kauppinen, and H. Lipsanen, Nano Lett. 13, 3581 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    G. E. Cirlin, V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, Yu. B. Samsonenko, A. D. Bouravleuv, J. C. Harmand, and F. Glas, Phys. Status Solidi RRL 3, 112 (2009).CrossRefGoogle Scholar
  11. 11.
    V. Novikov, S. Yu. Serov, N. G. Filosofov, I. V. Shtrom, V. G. Talalaev, O. F. Vyvenko, E. V. Ubyivovk, Yu.B. Samsonenko, A. D. Bouravleuv, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. G. Dubrovskii, Phys. Status Solidi RRL 4, 175 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Shtrom
    • 1
    • 2
    • 3
  • A. D. Bouravleuv
    • 1
    • 2
    • 3
  • Yu. B. Samsonenko
    • 2
    • 3
    • 4
  • A. I. Khrebtov
    • 2
    • 4
  • I. P. Soshnikov
    • 1
    • 2
    • 3
  • R. R. Reznik
    • 2
    • 4
    • 6
  • G. E. Cirlin
    • 2
    • 3
    • 4
  • V. Dhaka
    • 5
  • A. Perros
    • 5
  • H. Lipsanen
    • 5
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research Academic University—Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia
  4. 4.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  5. 5.Aalto UniversityEspooFinland
  6. 6.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations