Semiconductors

, Volume 50, Issue 12, pp 1641–1646 | Cite as

Quantum Hall effect and hopping conductivity in n-InGaAs/InAlAs nanoheterostructures

  • S. V. Gudina
  • Yu. G. Arapov
  • A. P. Saveliev
  • V. N. Neverov
  • S. M. Podgornykh
  • N. G. Shelushinina
  • M. V. Yakunin
  • I. S. Vasil’evskii
  • A. N. Vinichenko
XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016

Abstract

The longitudinal and Hall magnetoresistances are measured in the quantum Hall effect regime in the n-InGaAs/InAlAs heterostructures at temperatures of T = (1.8–30) K in magnetic fields up to B = 9 T. Temperature-induced transport in the region of the longitudinal resistance minima, corresponding to the plateau regions at Hall resistance, is investigated within the framework of the concept of hopping conductivity in a strongly localized electron system. The analysis of variable-range hopping conductivity in the region of the second, third, and fourth plateau of the quantum Hall effect provides the possibility of determining the localization length exponent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Heidelberg, 1984).CrossRefGoogle Scholar
  2. 2.
    N. F. Mott, J. Non-Cryst. Sol. 1, 1 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 70, 3796 (1993)ADSCrossRefGoogle Scholar
  5. 4a.
    D. G. Polyakov and B. I. Shklovskii, Phys. Rev. B 48, 11167 (1993).ADSCrossRefGoogle Scholar
  6. 5.
    I. L. Aleiner and B. I. Shklovskii, Phys. Rev. B 49, 13721 (1994).ADSCrossRefGoogle Scholar
  7. 6.
    The Quantum Hall Effect, Ed. by R. E. Prange, and S. M. Girvin, Graduate Texts in Contemporary Physics (Springer, Berlin, 1987).Google Scholar
  8. 7.
    B. Kramer, T. Ohtsuki, and S. Kettemann, Phys. Rep. 417, 211 (2005).ADSMathSciNetCrossRefGoogle Scholar
  9. 8.
    B. Huckestein, Rev. Mod. Phys. 67, 367 (1995).ADSCrossRefGoogle Scholar
  10. 9.
    D.-H. Shin, C. E. Becker, J. J. Harris, J. M. Fernandez, N. J. Woods, T. J. Thornton, D. K. Maude, and J.-C. Portal, Semicond. Sci. Technol. 14, 762 (1999).ADSCrossRefGoogle Scholar
  11. 10.
    M. Furlan, Phys. Rev. B 57, 14818 (1998).ADSCrossRefGoogle Scholar
  12. 11.
    F. Hohls, U. Zeitler, and R. J. Haug, Phys. Rev. Lett. 88, 036802 (2002).ADSCrossRefGoogle Scholar
  13. 12.
    Tao Tu, Yong-Jie Zhao, Guo-Ping Guo, Xiao-Jie Hao, and Guang-Can Guo, Phys. Lett. A 368, 108 (2007)ADSCrossRefGoogle Scholar
  14. 12a.
    Tu Tao, Zhao Yong-Jie, Hao Xiao-Jie, Wang Cheng-You, Guo Guang-Can, and Guo Guo-Ping, Chin. Phys. Lett. 25, 1083 (2008)ADSCrossRefGoogle Scholar
  15. 12b.
    Y. J. Zhao, T. Tu, X. J. Hao, G. C. Guo, H. W. Jiang, and G. P. Guo, Phys. Rev. B 78, 233301 (2008).ADSCrossRefGoogle Scholar
  16. 13.
    N. A. Dodoo-Amoo, K. Saeed, D. Mistry, S. P. Khanna, L. Li, E. N. Linfield, A. G. Davies, and J. E. Cunningham, J. Phys.: Condens. Matter 26, 475801 (2014)ADSGoogle Scholar
  17. 13a.
    N. A. Dodoo-Amoo, K. Saeed, L. Li, E. N. Linfield, A. G. Davies, and J. E. Cunningham, J. Phys.: Conf. Ser. 456, 012007 (2013)Google Scholar
  18. 13b.
    K. Saeed, N. A. Dodoo-Amoo, L. Li, S. P. Khanna, E. N. Linfield, A. G. Davies, and J. E. Cunningham, Phys. Rev. B 84, 155324 (2011).ADSCrossRefGoogle Scholar
  19. 14.
    S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Semicond. Sci. Technol. 10, 209 (1995).ADSCrossRefGoogle Scholar
  20. 15.
    Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S.M. Podgornykh, M. R. Popov, N. G. Shelushinina, G. I. Harus, M. V. Yakunin, S. A. Dvoretsky, and N. N. Mikhailov, J. Low Temp. Phys. 182 (2016, in press).Google Scholar
  21. 16.
    A. J. M. Giesbers, U. Zeitler, L. A. Ponomarenko, R. Yang, K. S. Novoselov, A. K. Geim, and J. C. Maan, Phys. Rev. B 80, 241411(R) (2009).Google Scholar
  22. 17.
    K. Bennaceur, P. Jacques, F. Portier, P. Roche, and D. C. Glattli, Phys. Rev. B 86, 085433 (2012).ADSCrossRefGoogle Scholar
  23. 18.
    C. Chuang, R. K. Puddy, H.-D. Lin, S.-T. Lo, T.-M. Chen, C. G. Smith, and C.-T. Liang, Solid State Commun. 152, 905 (2012).ADSCrossRefGoogle Scholar
  24. 19.
    C. Cobaleda, S. Pezzini, A. Rodriguez, E. Diez, and V. Bellani, Phys. Rev. B 90, 161408(R) (2014).Google Scholar
  25. 20.
    I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, A. L. Kvanin, S. S. Pushkarev, and M. A. Pushkin, Semiconductors 45, 1158 (2011)ADSCrossRefGoogle Scholar
  26. 20a.
    I. S. Vasil’evskii, S. S. Pushkarev, M. M. Grekhov, A. N. Vinichenko, D. V. Lavrukhin, and O. S. Kolentsova, Semiconductors 50, 559 (2016).ADSCrossRefGoogle Scholar
  27. 21.
    H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).ADSCrossRefGoogle Scholar
  28. 22.
    S. A. Trugman, Phys. Rev. B 27, 7539 (1983).ADSCrossRefGoogle Scholar
  29. 23.
    J. T. Chalker and P. D. Coddington, J. Phys. C: Solid State Phys. 21 (1988).Google Scholar
  30. 24.
    H. Aoki and T. Ando, Phys. Rev. Lett. 54, 831 (1985).ADSCrossRefGoogle Scholar
  31. 25.
    S. Hikami, Prog. Theor. Phys. 76, 1210 (1986).ADSCrossRefGoogle Scholar
  32. 26.
    A. M. M. Pruisken, B. Skoric, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999).ADSCrossRefGoogle Scholar
  33. 27.
    W. Li, G. A. Csáthy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 206807 (2005)ADSCrossRefGoogle Scholar
  34. 27a.
    W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009)ADSCrossRefGoogle Scholar
  35. 27b.
    W. Li, J. S. Xia, C. Vicente, N. S. Sullivan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 81, 033305 (2010).ADSCrossRefGoogle Scholar
  36. 28.
    A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).ADSCrossRefGoogle Scholar
  37. 29.
    A. M. M. Pruisken, and I. S. Burmistrov, JETP Lett. 87, 220 (2008)ADSCrossRefGoogle Scholar
  38. 29a.
    I. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin, Ann. Phys. 326, 1457 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Gudina
    • 1
  • Yu. G. Arapov
    • 1
  • A. P. Saveliev
    • 1
  • V. N. Neverov
    • 1
  • S. M. Podgornykh
    • 1
    • 2
  • N. G. Shelushinina
    • 1
  • M. V. Yakunin
    • 1
    • 2
  • I. S. Vasil’evskii
    • 3
  • A. N. Vinichenko
    • 3
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations