, Volume 50, Issue 11, pp 1548–1553 | Cite as

Investigation of the thermal stability of metastable GeSn epitaxial layers

  • V. P. Martovitsky
  • Yu. G. Sadofyev
  • A. V. Klekovkin
  • V. V. Saraikin
  • I. S. Vasil’evskii
XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016


A stack of five elastically strained metastable GeSn layers with a thickness of 200 nm each separated by Ge spacer layers with a thickness of 20 nm is grown on a (001) Si/Ge virtual substrate. The molar fraction of Sn in the GeSn layers is 0.005, 0.034, 0.047, 0.072, and 0.10. After growth the structure is subjected to thermal annealing for 2 min at a temperature of 400°C. It is demonstrated that during the course of annealing the GeSn alloy, along with plastic relaxation, undergoes phase separation; this phase separation begins before the end of plastic relaxation. The structural degradation of the GeSn layers increases with increasing concentration of Sn accumulated on the structure surface in the form of an amorphous layer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ragan and H. A. Atwater, Appl. Phys. Lett. 77, 3418 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menendez, Appl. Phys. Lett. 101, 072105 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    S. Wirthst, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, Nat. Photon. 9, 88 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    S. Ogus, W. Paul, T. F. Deutsch, B.-Y. Tsaur, and D. V. Murphy, Appl. Phys. Lett. 43, 848 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    R. A. Sofer and L. Friedman, Superlatt. Microstruct. 14, 189 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J.-E. Sundgren, and J. E. Greene, J. Appl. Phys. 83, 162 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J. Mene[acute]ndez, Appl. Phys. Lett. 97, 221912 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. G. Sadofyev, V. P. Martovitsky, and M. A. Bazalevskii, Bull. Russ. Acad. Sci.: Phys. 78, 29 (2014).CrossRefGoogle Scholar
  10. 10.
    Yu. G. Sadofyev, V. P. Martovitsky, M. A. Bazalevskii, A. V. Klekovkin, D. V. Aver’yanov, and I. S. Vasil’evskii, Semiconductors 49, 124 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    N. Herres, F. Fuchs, and J. Schmitzetal, Phys. Rev. B 53, 15 (688)(1996).CrossRefGoogle Scholar
  12. 12.
    S. N. G. Chu, A. T. Macrander, K. E. Strege, and W. D. Johnston, J. Appl. Phys. 57, 249 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    K. V. Ravi, Defects and Impurities in Semiconductor Silicon (Wiley, New York, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. P. Martovitsky
    • 1
  • Yu. G. Sadofyev
    • 1
    • 3
  • A. V. Klekovkin
    • 1
  • V. V. Saraikin
    • 2
  • I. S. Vasil’evskii
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Lukin State Research Institute of Physical ProblemsZelenogradRussia
  3. 3.National Research Nuclear University “Moscow Engineering Physics Institute,”MoscowRussia

Personalised recommendations