Semiconductors

, Volume 50, Issue 11, pp 1499–1505 | Cite as

Effect of a low-temperature-grown GaAs layer on InAs quantum-dot photoluminescence

  • A. N. Kosarev
  • V. V. Chaldyshev
  • V. V. Preobrazhenskii
  • M. A. Putyato
  • B. R. Semyagin
XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016

Abstract

The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancement of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Liu, T. Wang, Q. Jiang, R. Tutu, F. Pozzi, and A. Seeds, Nat. Photon. 5, 416 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    S. Mikhrin, A. Zhukov, A. Kovsh, N. Maleev, V. Ustinov, Yu. Shernyakov, I Kayander, E. Kondrat’eva, D. Livshits, I. Tarasov, M. Maximov, A. Tsatsulnikov, N. Ledentsov, P. Kop’ev, D. Bimberg, and Zh. Alferov, Semiconductors 34, 119 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    N. Ledentsov, Semicond. Sci. Technol. 26, 014001 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. Wu, S. Chen, A. Seeds, and H. Liu, J. Phys. D: Appl. Phys. 48, 363001 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Marent, T. Nowozin, M. Geller, and D. Bimberg, Semicond. Sci. Technol. 26, 014026 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature 81, 432 (2004).Google Scholar
  7. 7.
    F. Ferdos, M. Sadeghi, Q. X. Zhao, S. M. Wang, and A. Larsson, J. Cryst. Growth 227, 1140 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    H. Liu, B. Xu, D. Ding, Y. Chen, J. Zhang, J. Wu, and Z. Wang, J. Cryst. Growth 227, 1005 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    V. Chaldyshev, Mater. Sci. Eng. B 88, 195 (2002).CrossRefGoogle Scholar
  10. 10.
    M. Melloch, J. Woodall, E. Harmon, N. Otsuka, F. Pollak, D. Nolte, R. Feenstra, and M. Lutz, Ann. Rev. Mater. Sci. 25, 547 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    N. Bert, A. Veinger, M. Vilisova, S. Goloshchapov, I. Ivonin, S. Kozyrev, A. Kunitsyn, L. Lavrent’eva, D. Lubyshev, V. Preobrazhenskii, B. Semyagin, V. V. Tret’yakov, V. Chaldyshev, and M. Yakubenya, Phys. Solid State 35, 1289 (1993).ADSGoogle Scholar
  12. 12.
    A. Pastor, U. Prokhorova, P. Serdobintsev, V. Chaldyshev, and M. Yagovkina, Semiconductors 47, 1137 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    D. Nolte, J. Appl. Phys. 85, 6259 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    L. Desplanque, J. Lampin, and F. Mollot, Appl. Phys. Lett. 84, 2049 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    V. Nevedomskii, N. Bert, V. Chaldyshev, V. Preobrazhenskii, M. Putyato, and B. Semyagin, Semiconductors 43, 1617 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    V. Nevedomskii, N. Bert, V. Chaldyshev, V. Preobrazhenskii, M. Putyato, and B. Semyagin, Semiconductors 45, 1580 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    V. N. Nevedomskii, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 47, 1185 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    H. Casey, D. Sell, and K. Wecht, J. Appl. Phys. 46, 250 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    S. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knupfer, and G. Dohler, Appl. Phys. Lett. 68, 37 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    N. Bert, V. Chaldyshev, A. Kunitsyn, Yu. Musikhin, N. Faleev, V. Tretyakov, V. Preobrazhenskii, M. Putyato, and B. Semyagin, Appl. Phys. Lett. 70, 3146 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, Appl. Phys. Lett. 67, 279 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    W. van Roosbroeck, J. Appl. Phys. 26, 380 (1955).ADSCrossRefGoogle Scholar
  23. 23.
    P. W. M. Blom, C. Smit, J. E. M. Haverkort, and J. Wolter, Phys. Rev. B 47, 2072 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    P. Loukakos, C. Kalpouzos, I. Perakis, Z. Hatzopoulos, M. Sfendourakis, G. Kostantinidis, and C. Fotakis, J. Appl. Phys. 91, 9863 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    D. Aspnes, Surf. Sci. 132, 406 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    L. Kong, Z. Wu, Z. C. Feng, and I. T. Ferguson, J. Appl. Phys. 101, 126101 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, Appl. Phys. Lett. 81, 1195 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. N. Kosarev
    • 1
    • 2
  • V. V. Chaldyshev
    • 1
    • 2
  • V. V. Preobrazhenskii
    • 3
  • M. A. Putyato
    • 3
  • B. R. Semyagin
    • 3
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great Saint-Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations