Advertisement

Semiconductors

, Volume 50, Issue 10, pp 1369–1376 | Cite as

Efficiency droop in GaN LEDs at high injection levels: Role of hydrogen

  • N. I. Bochkareva
  • I. A. Sheremet
  • Yu. G. ShreterEmail author
Physics of Semiconductor Devices

Abstract

Point defects in GaN and, in particular, their manifestation in the photoluminescence, optical absorption, and recombination current in light-emitting diodes with InGaN/GaN quantum wells are analyzed. The results of this analysis demonstrate that the wide tail of defect states in the band gap of GaN facilitates the trap-assisted tunneling of thermally activated carriers into the quantum well, but simultaneously leads to a decrease in the nonradiative-recombination lifetime and to an efficiency droop as the quasi-Fermi levels intersect the defect states with increasing forward bias. The results reveal the dominant role of hydrogen in the recombination activity of defects with dangling bonds and in the efficiency of GaN-based devices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    L. Balagurov and P. J. Chong, Appl. Phys. Lett. 68, 43 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    O. Ambacher, W. Reiger, P. Ansmann, H. Angerer, T. D. Moustakas, and M. Stutzmann, Solid State Commun. 97, 365 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    P. B. Klein and S. C. Binari, J. Phys.: Condens. Matter 15, R1641 (2003).ADSGoogle Scholar
  6. 6.
    P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 47, 127 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 49, 1665 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    T. Mukai, K. Takekava, and S. Nakamura, Jpn. J. Appl. Phys. 37, L839 (1996).CrossRefGoogle Scholar
  12. 12.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, D. V. Tarkhin, Y. G. Shreter, E. A. Girnov, S. I. Stepanov, W. N. Wang, P. T. Chang, and P. J. Wang, Proc. SPIE 4996, 113 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, Jpn. J. Appl. Phys. 52, 08JE14 (2013).CrossRefGoogle Scholar
  15. 15.
    Yu. S. Lelikov, N. I. Bochkareva, R. I. Gorbunov, I. A. Martynov, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 42, 1342 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Efremov, D. V. Tarkhin, N. I. Bochkareva, R. I. Gorbunov, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 40, 375 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    M. A. Mastro, O. M. Kryliouk, T. J. Anderson, A. Davydov, and A. Shapiro, J. Cryst. Growth 274, 38 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, A. N. Kovalev, and F. I. Manyakhin, Semiconductors 33, 429 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    M. Mandurrino, G. Verzellesi, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, M. Meneghini, G. Meneghesso, and E. Zanoni, Phys. Status Solidi A 212, 947 (2015).CrossRefGoogle Scholar
  21. 21.
    N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 48, 1079 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Rose, Concept in Photoconductivity and Allied Problems (Krieger, New York, 1978).Google Scholar
  23. 23.
    O. Gelhausen, M. R. Phillips, E. M. Goldys, T. Paskova, B. Monemar, M. Strassburg, and A. Hoffmann, Phys. Rev. B 69, 125210 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    D. Han, K. Wang, and L. Yang, J. Appl. Phys. 80, 2475 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    D. L. Gricom, J. Appl. Phys. 58, 2524 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    N. H. Nickel, N. M. Johnson, and C. G. VandeWalle, Phys. Rev. Lett. 72, 3393 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • I. A. Sheremet
    • 2
  • Yu. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Financial University under the Government of the Russian FederationMoscowRussia

Personalised recommendations