Advertisement

Semiconductors

, Volume 50, Issue 10, pp 1299–1303 | Cite as

Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm

  • A. V. Babichev
  • A. Bousseksou
  • N. A. Pikhtin
  • I. S. Tarasov
  • E. V. Nikitina
  • A. N. Sofronov
  • D. A. Firsov
  • L. E. Vorobjev
  • I. I. Novikov
  • L. Ya. Karachinsky
  • A. Yu. EgorovEmail author
Electronic Properties of Semiconductors

Abstract

The room-temperature generation of multiperiod quantum-cascade lasers (QCL) at a wavelength of 5.8 μm in the pulsed mode is demonstrated. The heterostructure of a quantum-cascade laser based on a heterojunction of InGaAs/InAlAs alloys is grown by molecular-beam epitaxy and incorporates 60 identical cascades. The threshold current density of the stripe laser 1.4 mm long and 22 μm wide is ~4.8 kA/cm2 at a temperature of 303 K. The maximum power of the optical-radiation output from one QCL face, recorded by a detector, is 88 mW. The actual optical-power output from one QCL face is no less than 150 mW. The results obtained and possible ways of optimizing the structure of the developed quantum-cascade lasers are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
  2. 2.
    A. Y. Cho, Appl. Phys. Lett. 19, 467 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264 (5158), 553 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 680 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    M. Fischer, G. Scalari, C. Walther, and J. Faist, J. Cryst. Growth 311, 1939 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science 295 (5553), 301 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    C. Gmachi, F. Capasso, A. Tredicucci, D. L. Sivxo, R. Kohler, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 808 (1999).CrossRefGoogle Scholar
  8. 8.
    O. Fedosenko, M. Chashnikova, S. Machulik, J. Kischkat, M. Klinkmu[umlaut]ller, A. Aleksandrova, G. Monastyrskyi, M. P. Semtsiv, and W. T. Masselink, J. Cryst. Growth 323, 484 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. Lyakh, C. Pflüg, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, Appl. Phys. Lett. 92, 111110 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    X. Chen, L. Cheng, D. Guo, F. S. Choa, and T. Worchesky, Proc. SPIE 7953, 79531Z (2011).CrossRefGoogle Scholar
  11. 11.
    C. A. Wang, A. K. Goyal, R. K. Huang, J. P. Donnelly, D. R. Calawa, G. W. Turner, A. Sanchez-Rubio, A. Hsu, Q. Hu, and B. Williams, MA 02420-9108. http://www.rle.mit.edu/thz/documents/Wang_QCLmaterials_09_v3.pdfGoogle Scholar
  12. 12.
    F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, IEEE J. Sel. Top. Quantum Electron. 6, 931 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Razeghi, Proc. SPIE 7230, 723011 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photon. 4, 99 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    A. Yu. Egorov, P. N. Brunkov, E. V. Nikitina, E.V.Pirogov, M. S. Sobolev, A. A. Lazarenko, M. V. Baidakova, D. A. Kirilenko, and S. G. Konnikov, Semiconductors 48, 1600 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, Appl. Phys. Lett. 93, 224103 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    K. Hashimura, K. Ishii, and K. Awazu, Jpn. J. Appl. Phys. 54, 112701 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, Adv. Biomed. Eng. 1, 74 (2012).CrossRefGoogle Scholar
  19. 19.
    J. S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 83, 5136 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David, Microelectron. J. 34, 383 (2003).CrossRefGoogle Scholar
  21. 21.
    S. Slivken, A. Evans, J. David, and M. Razeghi, Appl. Phys. Lett. 81, 4321 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    J. S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi, IEEE Photon. Technol. Lett. 16, 747 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, Appl. Phys. Lett. 83, 2503 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 84, 314 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, IEEE Photon. Technol. Lett. 16, 744 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    J. S. Yu, S. Slivken, A. Evans, J. David, and M. Razeghi, Appl. Phys. Lett. 82, 3397 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    R. E. Fern and A. Onton, J. Appl. Phys. 42, 3499 (1971).ADSCrossRefGoogle Scholar
  28. 28.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1998), p. 479.Google Scholar
  29. 29.
    A. Friedrich, G. Scarpa, G. Boehm, and M. C. Amann, Electron. Lett. 40 (22), 1 (2004).CrossRefGoogle Scholar
  30. 30.
    L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, Appl. Phys. Lett. 88, 201115 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    Y. V. Flores, A. Aleksandrova, M. Elagin, J. Kischkat, S. S. Kurlov, G. Monastyrskyi, J. Hellemann, S. L. Golovynskyi, O. I. Dacenko, S. V. Kondratenko, G. G. Tarasov, M. P. Semtsiv, and W. T. Masselink, J. Cryst. Growth 425, 360 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Babichev
    • 1
    • 2
  • A. Bousseksou
    • 3
  • N. A. Pikhtin
    • 4
  • I. S. Tarasov
    • 4
  • E. V. Nikitina
    • 5
  • A. N. Sofronov
    • 6
  • D. A. Firsov
    • 6
  • L. E. Vorobjev
    • 6
  • I. I. Novikov
    • 1
    • 4
  • L. Ya. Karachinsky
    • 1
    • 4
  • A. Yu. Egorov
    • 1
    • 2
    Email author
  1. 1.Connector Optics LLCSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Institut d’Electronique Fondamentale, UMR 8622 CNRSUniversity Paris SaclayParisFrance
  4. 4.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Saint Petersburg Academic University—Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  6. 6.Peter-the-Great Saint-Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations