Semiconductors

, Volume 50, Issue 7, pp 853–859 | Cite as

Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

  • P. V. Seredin
  • A. V. Fedyukin
  • I. N. Arsentyev
  • L. S. Vavilova
  • I. S. Tarasov
  • T. Prutskij
  • H. Leiste
  • M. Rinke
Nonelectronic Properties of Semiconductors (Atomic Structure, Diffusion)
  • 29 Downloads

Abstract

The aim of this study is to explore the structural and optical properties of single-crystal GaAs(100) doped with Cr atoms by burning them into the substrate at high temperatures. The diffusion of chromium into single-crystal GaAs(100) substrates brings about the formation of a thin (~20–40 μm) GaAs:Cr transition layer. In this case, chromium atoms are incorporated into the gallium-arsenide crystal lattice and occupy the regular atomic sites of the metal sublattice. As the chromium diffusion time is increased, such behavior of the dopant impurity yields changes in the energy structure of GaAs, a decrease in the absorption at free charge carriers, and a lowering of the surface recombination rate. As a result, the photoluminescence signal from the sample is significantly enhanced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Kuznetsov, L. S. Lunin, and V. I. Ratushnyi, Heterostructures Based on Quarternary and Quinary AIII BV Solid Solutions (Vyssh. Skola, Rostov-on-Don, 2003) [in Russian].Google Scholar
  2. 2.
    H. Q. Zheng, K. Radhakrishnan, H. Wang, P. H. Zhang, S. F. Yoon, and G. I. Ng, J. Cryst. Growth 197, 762 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Marmalyuk, M. A. Ladugin, I. V. Yarotskaya, V. A. Panarin, and G. T. Mikaelyan, Quantum Electron. 42, 15 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, A. S. Lenshin, M. S. Smirnov, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 46, 719 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Appl. Surf. Sci. 267, 181 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    P. V. Seredin, A. V. Glotov, V. E. Ternovaya, E. P. Domashevskaya, I. N. Arsentyev, L. S. Vavilova, and I. S. Tarasov, Semiconductors 45, 1433 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    P. V. Seredin, A. V. Glotov, V. E. Ternovaya, E. P.Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 45, 481 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    P. V. Seredin, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and A. L. Stankevich, Semiconductors 47, 7 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    K. Kanai, J. Okabayashi, S. Toyoda, M. Oshima, and K. Ono, Appl. Phys. Lett. 88, 192506 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    P. Mascher, D. Kerr, and S. Dannefaer, J. Cryst. Growth 85, 295 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    T. Tibermacine and A. Merazga, Rev. Energ. Renouvelab. 12, 125 (2009).Google Scholar
  12. 12.
    D. K. Bowen and B. K. Tanner, High Resolution X-Ray Diffractometry and Topography PDF, e-Library (Taylor Francis, London, 2005).Google Scholar
  13. 13.
    P. V. Seredin, A. S. Lenshin, A. V. Glotov, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Semiconductors 48, 1094 (2014).CrossRefGoogle Scholar
  14. 14.
    P. V. Seredin, V. E. Ternovaya, A. V. Glotov, A. S. Lenshin, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Phys. Solid State 55, 2161 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    P. V. Seredin, A. V. Glotov, A. S. Lenshin, I. N. Arsentyev, and D. A. Vinokurov, Semiconductors 48, 21 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. Seredin, E. P. Domashevskaya, V. E. Ternovaya, I.N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, and T. Prutskij, Phys. Solid State 55, 2169 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Phys. B: Condens. Matter 405 (22), 4607 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I.N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, and I. A. Zhurbina, Semiconductors 44, 184 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 43, 1610 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).Google Scholar
  21. 21.
    W. A. Harrison, Electronic Structure and the Properties of Solids (and W. H. Freeman, San Francisco, 1980).Google Scholar
  22. 22.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Phys. B: Condens. Matter 405, 2694 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    D. Wolverson, D. M. Bird, C. Bradford, K. A. Prior, and B. C. Cavenett, Phys. Rev. B 64, 113203 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    Yu. A. Goldberg, in Handbook Series on Semiconductor Parameters, Ed. by M. Levinshtein, S. Rumyantsev, and M. Shur (World Scientific, London, 1999), Vol. 2, p. 1.CrossRefGoogle Scholar
  25. 25.
    M. D. Vilisova, E. P. Drugova, I. V. Ponomarev, and V. A. Chubirko, Semiconductors 42, 238 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. V. Seredin
    • 1
  • A. V. Fedyukin
    • 1
  • I. N. Arsentyev
    • 2
  • L. S. Vavilova
    • 2
  • I. S. Tarasov
    • 2
  • T. Prutskij
    • 3
  • H. Leiste
    • 4
  • M. Rinke
    • 4
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Instituto de CienciasBenemérita Universidad Autonoma de PueblaPuebla, Pue.Mexico
  4. 4.Karlsruhe Nano Micro FacilityEggenstein-LeopoldshafenGermany

Personalised recommendations