Semiconductors

, Volume 50, Issue 5, pp 694–698 | Cite as

Role of the heat accumulation effect in the multipulse modes of the femtosecond laser microstructuring of silicon

Fabrication, Treatment, and Testing of Materials and Structures
  • 33 Downloads

Abstract

The results of quantitative evaluation of the heat accumulation effect during the femtosecond laser microstructuring of the surface of silicon are presented for discussion. In the calculations, the numerical–analytical method is used, in which the dynamics of electronic processes and lattice heating are simulated by the numerical method, and the cooling stage is described on the basis of an analytical solution. The effect of multipulse irradiation on the surface temperature is studied: in the electronic subsystem, as the dependence of the absorbance on the excited carrier density and the dependence of the absorbance on the electron-gas temperature; in the lattice subsystem, as the variation in the absorbance from pulse to pulse. It was shown that, in the low-frequency pulse-repetition mode characteristic of the femtosecond microstructuring of silicon, the heat accumulation effect is controlled not by the residual surface temperature by the time of the next pulse arrival, which corresponds to conventional concepts, but by an increase in the maximum temperature from pulse to pulse, from which cooling begins. The accumulation of the residual temperature of the surface can affect the microstructuring process during irradiation near the evaporation threshold or with increasing pulse-repetition rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Cerami, E. Mazur, S. Nolte, and C. B. Schaffer, in Ultrafast Nonlinear Optics, Ed. by R. Thomson, Ch. Leburn, and D. Reid, Scottish Graduate Series (Springer International, Switzerland, 2013), Vol. 13, p. 287.Google Scholar
  2. 2.
    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, Appl. Surf. Sci. 256, 61 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    M. Barberoglou, G. D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, and P. A. Loukakos, Appl. Phys. A 113, 273 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    W. Han, L. Jiang, X. Li, P. Liu, L. Xu, and Y. F. Lu, Opt. Express 21, 15506 (2013).ADSGoogle Scholar
  6. 6.
    F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, and M. Bounhalli, Opt. Express 19, 9035 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, Appl. Surf. Sci. 233, 275 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    A. Y. Vorobyev and C. Guo, Appl. Phys. Lett. 86, 011916 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Martsinovskiy, G. D. Shandybina, Yu. S. Dement’eva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan’, and P. K. Kashkarov, Semiconductors 43, 1298 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    R. V. Dyukin, G. A. Martsinovskiy, G. D. Shandybina, E. B. Yakovlev, and I. V. Guk, J. Opt. Technol. 78, 558 (2011).CrossRefGoogle Scholar
  12. 12.
    R. V. Dyukin, G. A. Martsinovskiy, O. N. Sergaeva, G. D. Shandybina, V. V. Svirina, and E. B. Yakovlev, in Laser Pulses—Theory, Technology, and Applications (Rijeka, InTech, 2012), Vol. 7, p. 197.Google Scholar
  13. 13.
    I. A. Ostapenko, S. V. Zabotnov, G. D. Shandybina, L. A. Golovan’, A. V. Chervyakov, Yu. V. Ryabchikov, V. V. Yakovlev, V. Yu. Timoshenko, and P. K. Kashkarov, Izv. Akad. Nauk, Ser. Fiz. 70 (9), 1315 (2006).Google Scholar
  14. 14.
    Y. Han and S. Qu, Chem. Phys. Lett. 495, 241 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    E. B. Yakovlev, O. N. Sergaeva, V. V. Svirina, and M. V. Yarchuk, Proc. SPIE 9065, 906509 (2013).CrossRefGoogle Scholar
  16. 16.
    I. V. Guk, G. A. Martsinovskiy, G. D. Shandybina, and E. B. Yakovlev, Semiconductors 47, 1616 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    S. V. Zabotnov, I. A. Ostapenko, L. A. Golovan’, V. Yu. Timoshenko, P. K. Kashkarov, and G. D. Shandybina, Quantum Electron. 35, 943 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. Y. Vorobyev and C. Guo, Opt. Express 19, 1032 (2011).CrossRefGoogle Scholar
  19. 19.
    Y. Yang, J. Yang, L. Xue, and Y. Guo, Appl. Phys. Lett. 97, 141101 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Vedenov and G. G. Gladush, Physical Processes in Laser Material Processing (Energoatomizdat, Moscow, 1985) [in Russian].Google Scholar
  21. 21.
    O. Varlamova, M. Bounhallia, and J. Reif, Appl. Surf. Sci. 278, 62 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Ma, J. Si, X. Sun, T. Chen, and X. Hou, Appl. Surf. Sci. 313, 905 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Guk
    • 1
  • G. D. Shandybina
    • 1
  • E. B. Yakovlev
    • 1
  1. 1.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations