Advertisement

Semiconductors

, Volume 50, Issue 5, pp 601–606 | Cite as

Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

  • V. I. Avilov
  • O. A. Ageev
  • B. G. Konoplev
  • V. A. Smirnov
  • M. S. Solodovnik
  • O. G. Tsukanova
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti2O3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

Keywords

Titanium Film Titanium Hydride Oxide Nanostructures Titanium Thin Film Local Anodic Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Diebold, Surf. Sci. Rep. 48, 53 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    O. A. Ageev, V. A. Smirnov, N. I. Alyab’eva, B. G. Konoplev, and V. V. Polyakov, Semiconductors 44, 1703 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    O. A. Ageev, B. G. Konoplev, V. V. Polyakov, A.M. Svetlichnyi, and V. A. Smirnov, Nano-Mikrosist. Tekh. 1 (90), 14 (2008).Google Scholar
  4. 4.
    M. Tsuchiya, K. R. Subramanian, S. Sankaranarayanan, and S. Ramanathan, Prog. Mater. Sci. 54, 981 (2009).CrossRefGoogle Scholar
  5. 5.
    V. K. Nevolin, Probe Nanotechnology in Electronics (Tekhnosfera, Moscow, 2006) [in Russian].zbMATHGoogle Scholar
  6. 6.
    A. O. Ageev, B. G. Konoplev, V. V. Polyakov, A. M. Svetlichnyi, and V. A. Smirnov, Russ. Microelectron. 36, 353 (2007).CrossRefGoogle Scholar
  7. 7.
    V. I. Avilov, O. A. Ageev, A. S. Kolomiitsev, B. G. Konoplev, and V. A. Smirnov, Semiconductors 48, 1757 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    D. Acharyya, A. Hazra, and P. Bhattacharyya, Microelectron. Reliab. 54, 541 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Feldman, Nanolithography. The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems (Woodhead, Cambridge, 2014).Google Scholar
  10. 10.
    National Institute of Standards and Technology, NIST X-ray Photoelectron Spectroscopy Database. http://srdata.nist.gov/xps/Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. I. Avilov
    • 1
  • O. A. Ageev
    • 1
  • B. G. Konoplev
    • 1
  • V. A. Smirnov
    • 1
  • M. S. Solodovnik
    • 1
  • O. G. Tsukanova
    • 1
  1. 1.Institute of Nanotechnologies, Electronics, and Equipment EngineeringSouthern Federal UniversityTaganrogRussia

Personalised recommendations