Semiconductors

, Volume 50, Issue 4, pp 541–544 | Cite as

On a reduction in cracking upon the growth of AlN on Si substrates by hydride vapor-phase epitaxy

  • Sh. Sh. Sharofidinov
  • V. I. Nikolaev
  • A. N. Smirnov
  • A. V. Chikiryaka
  • I. P. Nikitina
  • M. A. Odnoblyudov
  • V. E. Bugrov
  • A. E. Romanov
Fabrication, Treatment, and Testing of Materials and Structures

Abstract

The main problem of the epitaxial growth of thick AlN layers on a Si substrate consists in the formation of cracks, which complicates the application of structures of this kind in the fabrication of semiconductor devices. The possibility of obtaining crack-free AlN layers with a thickness exceeding 1 μm and a mirror- smooth surface by hydride vapor-phase epitaxy is demonstrated. The properties of the layers are studied by X-diffraction analysis, optical and scanning electron microscopy, and Raman spectroscopy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Raghavan and J. Redwing, J. Appl. Phys. 96, 2995 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    M. A. Mastro, C. R. Eddy, D. K. Gaskill, N. D. Bassim, J. Casey, A. Rosenberg, R. T. Holm, R. L. Henry, and M. E. Twigg, J. Cryst. Growth 287, 610 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Bessolov, V. Yu. Davydov, Yu. V. Zhilyaev, E. V. Konenkova, G. N. Mosina, S. D. Raevski, S. N. Rodin, Sh. Sh. Sharofidinov, M. P. Shcheglov, Hee Seok Park, and M. Koike, Tech. Phys. Lett. 31, 915 (2005).CrossRefGoogle Scholar
  4. 4.
    A. Dadgar, T. Hempel, J. Bläsing, O. Schulz, S. Fritze, J. Christen, and A. Krost, Phys. Status Solidi C 8, 1503 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Feng, H. Wei, S. Yang, Z. Chen, L. Wang, S. Kong, G. Zhao, and X. Liu, Sci. Rep. 4, 6416 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    X. Wang, H. Li, J. Wang, and L. Xiao, Electron. Mater. Lett. 10, 1069 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    Sh. Sh. Sharofidinov, A. A. Golovatenko, I. P. Nikitina, N. V. Seredova, M. G. Mynbaeva, V. E. Bougrov, M. A. Odnoblyudov, S. I. Stepanov, and V. I. Nikolaev, Fiz. Mekh. Mater. 22 (1), 53 (2015).Google Scholar
  8. 8.
    M. Ali, A. E. Romanov, S. Suihkonen, O. Svensk, P. T. Torma, M. Sopanen, H. Lipsanen, M. A. Odnoblyudov, and V. E. Bougrov, J. Cryst. Growth 315, 188 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    J. Komiyama, K. Eriguchi, Y. Abe, S. Suzuki, H. Nakanishi, T. Yamane, H. Murakami, and A. Koukitu, J. Cryst. Growth 310, 96 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    V. N. Bessolov, Yu. V. Zhilyaev, E. V. Konenkova, L. M. Sorokin, N. A. Feoktistov, Sh. Sh. Sharofidinov, M. P. Shcheglov, S. A. Kukushkin, L. I. Mets, and A. V. Osipov, J. Opt. Technol. 78, 435 (2011).CrossRefGoogle Scholar
  11. 11.
    C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. A. Nikishin, N. N. Faleev, H. Temkin, and S. Zollner, Phys. Rev. 63, 125313 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Sh. Sh. Sharofidinov
    • 1
    • 2
  • V. I. Nikolaev
    • 1
    • 2
    • 3
  • A. N. Smirnov
    • 1
  • A. V. Chikiryaka
    • 1
  • I. P. Nikitina
    • 1
  • M. A. Odnoblyudov
    • 4
  • V. E. Bugrov
    • 2
  • A. E. Romanov
    • 1
    • 2
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.OOO Perfect CrystalsSt. PetersburgRussia
  4. 4.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations