Semiconductors

, Volume 50, Issue 4, pp 435–439 | Cite as

Theory of the anomalous diffusion of carriers in disordered organic materials under conditions of the CELIV experiment

Electronic Properties of Semiconductors

Abstract

Analytical solutions for the transient current in the СELIV (Charge Extraction by Linearly Increasing Voltage) experiment are found in both the quasi-equilibrium (taking into account field-enhanced diffusion) and dispersive transport modes. The ratio of the time of current passage through the maximum to the transit time significantly decreases with increasing disorder. Simple analytical expressions for this ratio, containing only one dimensionless parameter characterizing the given material in each case, are obtained. The conditions of applicability of the known CELIV theory (without diffusion) are determined. The result allows calculations of the transit time in the case where the transient-current signal is sharply asymmetric and slowly decreases over long times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Loglund, and W. R. Salaneck, Nature 397, 121 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    A. J. Mozer and N. S. Sariciftci, C.R. Chimie 2006, 568 (2006).CrossRefGoogle Scholar
  3. 3.
    P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography (CRC, Boca Raton, 1998).Google Scholar
  4. 4.
    Ta-Ya Chu and Ok-Keun Song, J. Appl. Phys. 104, 023711 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    G. Jucka, K. Arlauskas, and M. Vilinas, Phys. Rev. Lett. 84, 4946 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    G. Jucka, K. Arlauskas, M. Viliunas, K. Genevicius, R. Österbacka, and H. Stubb, Phys. Rev. B 62, R16235 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    A. J. Mozer, N. S. Sariciftci, L. Lutsen, D. Vanderzande, R. Österbacka, M. Westerling, and G. Jucka, Appl. Phys. Lett. 86, 112104 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    H. Bässler, Phys. Status Solidi B 175, 15 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    V. R. Nikitenko, H. von Seggern, and H. Bässler, J. Phys.: Condens. Matter 19, 136210 (2007).ADSGoogle Scholar
  10. 10.
    V. I. Arkhipov and A. I. Rudenko, Philos. Mag. B 45, 189 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    V. R. Nikitenko and A. P. Tyutnev, Semiconductors 41, 1101 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    V. R. Nikitenko and M. N. Strikhanov, J. Appl. Phys. 115, 073704 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Arkhipov, E. V. Emelianova, and G. I. Adriaenssens, Phys. Rev. B 64, 125125 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Rudenko and V. I. Arkhipov, Philos. Mag. B 45, 177 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Nenashev, F. Jansson, S. D. Baranovskii, R. Ösrerbacka, A. V. Dvurechenskii, and F. Gebhard, Phys. Rev. B 81, 115204 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    V. I. Arkhipov and V. R. Nikitenko, Sov. Phys. Semicond. 24, 1269 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. R. Nikitenko
    • 1
  • M. M. Amrakulov
    • 1
  • M. D. Khan
    • 1
  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations