Advertisement

Semiconductors

, Volume 50, Issue 2, pp 240–243 | Cite as

Si:Si LEDs with room-temperature dislocation-related luminescence

  • N. A. Sobolev
  • A. E. Kalyadin
  • M. V. Konovalov
  • P. N. Aruev
  • V. V. Zabrodskiy
  • E. I. Shek
  • K. F. Shtel’makh
  • A. N. Mikhaylov
  • D. I. Tetel’baum
Physics of Semiconductor Devices

Abstract

Silicon-based light-emitting diodes (LEDs) fabricated by the Si-ion implantation and chemical-vapor deposition methods are studied. Room-temperature dislocation-related electroluminescence (EL) is observed in LEDs based on n-Si. In LEDs based on p-Si, the EL is quenched at temperatures higher than 220 K. The EL-excitation efficiencies are measured for the D1 line at room temperature and the D1 and D4 lines at liquid-nitrogen temperature.

Keywords

Polycrystalline Silicon Solid State Phenom Peak Energy Position Direct Wafer Bonding Pump Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Sobolev, Semiconductors 44, 1 (2010).CrossRefADSGoogle Scholar
  2. 2.
    V. Kveder, V. Badylevich, E. Steinman, A. Izotov, M. Zeibt, and W. Schreter, Appl. Phys. Lett. 84, 2106 (2004).CrossRefADSGoogle Scholar
  3. 3.
    E. O. Sveinbjornsson and J. Weber, Appl. Phys. Lett. 69, 2686 (1996).CrossRefADSGoogle Scholar
  4. 4.
    M. Kittler, X. Yu, T. Mchedlidze, T. Arguirov, O. F. Vyvenko, W. Seifert, M. Reiche, T. Wilhelm, M. Seibt, O. Vodouble, A. Wolff, and W. Fritzsche, Small 3, 964 (2007).CrossRefGoogle Scholar
  5. 5.
    X. Yu, W. Seifert, O. F. Vyvenko, M. Kittler, T. Wilhelm, and M. Reiche, Appl. Phys. Lett. 93, 041108 (2008).CrossRefADSGoogle Scholar
  6. 6.
    N. A. Sobolev, A. M. Emel’yanov, V. V. Zabrodskiy, N. V. Zabrodskaya, V. L. Sukhanov, and E. I. Shek, Semiconductors 41, 616 (2007).CrossRefADSGoogle Scholar
  7. 7.
    Tu Hoang, J. Holleman, Ph. le Minh, J. Schmitz, T. Mchedlidze, T. Arguirov, and M. Kittler, IEEE Trans. Electron Dev. 54, 1860 (2007).CrossRefADSGoogle Scholar
  8. 8.
    V. V. Kveder, E. A. Steinman, S. A. Shevchenko, and H. G. Grimmeiss, Phys. Rev. B 51, 10520 (1995).CrossRefADSGoogle Scholar
  9. 9.
    E. A. Steinman, A. N. Tereshchenko, and N. V. Abrosimov, Solid State Phenom. 131—133, 607 (2008).CrossRefGoogle Scholar
  10. 10.
    N. A. Sobolev, Physica B 308—310, 333 (2001).CrossRefGoogle Scholar
  11. 11.
    N. A. Sobolev, A. M. Emel’yanov, R. N. Kyutt, and Yu. A. Nikolaev, Solid State Phenom. 69—70, 371 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. A. Sobolev
    • 1
  • A. E. Kalyadin
    • 1
  • M. V. Konovalov
    • 1
  • P. N. Aruev
    • 1
  • V. V. Zabrodskiy
    • 1
  • E. I. Shek
    • 1
  • K. F. Shtel’makh
    • 1
    • 2
  • A. N. Mikhaylov
    • 3
  • D. I. Tetel’baum
    • 3
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations