, Volume 49, Issue 12, pp 1665–1670 | Cite as

Increase in the Shockley–Read–Hall recombination rate in InGaN/GaN QWs as the main mechanism of the efficiency droop in LEDs at high injection levels

  • N. I. Bochkareva
  • Yu. T. Rebane
  • Yu. G. ShreterEmail author
Physics of Semiconductor Devices


It is shown that the efficiency droop observed as the current through a GaN-based light-emitting diode increases is due to a decrease in the Shockley–Read–Hall nonradiative lifetime. The lifetime decreases with increasing current because a steadily growing number of traps in the density-of-states tails of InGaN/GaN quantum wells become nonradiative recombination centers upon the approach of quasi-Fermi levels to the band edges. This follows from the correlation between the efficiency droop and the appearance of negative differential capacitance, observed in the study. The correlation appears due to slow trap recharging via the trap-assisted tunneling of electrons through the n-type barrier of the quantum well and to the inductive nature of the diode-current variation with forward bias.


Ideality Factor Forward Bias External Quantum Efficiency Exponential Tail Injection Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 2007.CrossRefADSGoogle Scholar
  2. 2.
    J. Iveland, L. Martinelly, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 2013.CrossRefADSGoogle Scholar
  3. 3.
    J. Iveland, M. Piccardo, L. Martinelly, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, Appl. Phys. Lett. 105, 052103 2014.CrossRefADSGoogle Scholar
  4. 4.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 2010.CrossRefADSGoogle Scholar
  5. 5.
    M. Pavesi, M. Manfredi, F. Rossi, M. Meneghini, E. Zanoni, U. Zehnder, and U. Strauss, Appl. Phys. Lett. 89, 041917 2006.CrossRefADSGoogle Scholar
  6. 6.
    M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, and B. Hahn, Phys. Status Solidi A 206, 1125 2009.CrossRefADSGoogle Scholar
  7. 7.
    N. I. Bochkareva, Y. T. Rebane, and Y. G. Shreter, Appl. Phys. Lett. 103, 191101 2013.CrossRefADSGoogle Scholar
  8. 8.
    N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 48, 1079 2014.CrossRefGoogle Scholar
  9. 9.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Semiconductors 41, 87 2007.CrossRefADSGoogle Scholar
  10. 10.
    J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 2010.CrossRefADSGoogle Scholar
  11. 11.
    T. J. Badcook, S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, Jpn. J. Appl. Phys. 52, 08JK10 (2013).CrossRefGoogle Scholar
  12. 12.
    Tunneling Phenomena in Solids, Ed. by E. Burstein and S. Lundqvist, Lectures presented at the 1967/NATO Advanced Study Institute at Risö, Denmark (Plenum, New York, 1969; Moscow, Mir, 1973).Google Scholar
  13. 13.
    C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 1995.CrossRefADSGoogle Scholar
  14. 14.
    R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. van der Stricht, Appl. Phys. Lett. 74, 263 1999.CrossRefADSGoogle Scholar
  15. 15.
    D. Monroe, Phys. Rev. Lett. 54, 146 1985.CrossRefADSGoogle Scholar
  16. 16.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 47, 127 2013.CrossRefADSGoogle Scholar
  17. 17.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, D. V. Tarkhin, Y. G. Shreter, E. A. Girnov, S. I. Stepanov, W. N. Wang, P. T. Chang, and P. J. Wang, Proc. SPIE 4996, 113 2003.CrossRefADSGoogle Scholar
  18. 18.
    M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and A. K. Jonscher, IEEE Trans. Electron Dev. 45, 2196 1998.CrossRefADSGoogle Scholar
  19. 19.
    S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim, and J. S. Park, Appl. Phys. Lett. 94, 131106 2009.CrossRefADSGoogle Scholar
  20. 20.
    Y. Li, C. D. Wang, L. F. Feng, C. Y. Zhu, H. X. Cong, D. Li, and G. Y. Zhang, J. Appl. Phys. 109, 124506 2011.CrossRefADSGoogle Scholar
  21. 21.
    R. F. Kazarinov, V. I. Stafeev, and R. A. Suris, Sov. Phys. Semicond. 1, 1084 1967.Google Scholar
  22. 22.
    A. Rose, Concept in Photoconductivity and Allied Problems (Krieger, New York, 1978).Google Scholar
  23. 23.
    N. H. Nickel, N. M. Johnson, and C. G. van de Walle, Phys. Rev. Lett. 72, 3393 1994.CrossRefADSGoogle Scholar
  24. 24.
    A. G. Kazanskii and E. P. Milichevich, Sov. Phys. Semicond. 18, 1137 1984.Google Scholar
  25. 25.
    D. L. Gricom, J. Appl. Phys. 58, 2524 1985.CrossRefADSGoogle Scholar
  26. 26.
    D. Han, K. Wang, and L. Yang, J. Appl. Phys. 80, 2475 1996.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • Yu. T. Rebane
    • 1
  • Yu. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations