Semiconductors

, Volume 49, Issue 11, pp 1483–1492 | Cite as

Temperature quenching of spontaneous emission in tunnel-injection nanostructures

  • V. G. Talalaev
  • B. V. Novikov
  • G. E. Cirlin
  • H. S. Leipner
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 41 Downloads

Abstract

The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

References

  1. 1.
    D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).Google Scholar
  2. 2.
    V. Tokranov, M. Yakimov, A. Katsnelson, M. Lamberti, and S. Oktyabrsky, Appl. Phys. Lett. 83, 833 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. E. Zhukov, Semiconductor Nanostructure Lasers (Elmor, St.-Petersburg, 2007) [in Russian].Google Scholar
  4. 4.
    Zh. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).CrossRefADSGoogle Scholar
  5. 5.
    A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, Electron. Lett. 42, 774 (2006). A ' ECrossRefGoogle Scholar
  6. 6.
    L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).CrossRefADSGoogle Scholar
  7. 7.
    P. Bhattacharya and S. Ghosh, Appl. Phys. Lett. 80, 3482 (2002).CrossRefADSGoogle Scholar
  8. 8.
    P. Bhattacharya and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).CrossRefADSGoogle Scholar
  9. 9.
    V. M. Ustinov, A. E. Zhukov, N. A. Maleev, and A. R. Kovsh, RF Patent No. 2205468 (2002).Google Scholar
  10. 10.
    V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Y. B. Samsonenko, V. A. Egorov, and G. E. Cirlin, Appl. Phys. Lett. 93, 031105 (2008).CrossRefADSGoogle Scholar
  11. 11.
    V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gosele, Yu. B. Samsonenko, and G. E. Cirlin, Semiconductors 44, 1050 (2010).CrossRefADSGoogle Scholar
  12. 12.
    V. G. Talalaev, A. A. Tonkikh, N. D. Zakharov, A. V. Senichev, J. W. Tomm, P. Werner, B. V. Novikov, L. V. Asryan, B. Fuhrmann, J. Schilling, H. S. Leipner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Semiconductors 46, 1460 (2012).CrossRefADSGoogle Scholar
  13. 13.
    V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, L. V. Asryan, N. D. Zakharov, P. Werner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Vestn. SPb. Univ., Ser. 4, No. 3, 34 (2012).Google Scholar
  14. 14.
    V. G. Talalaev, G. E. Cirlin, L. I. Gorai, B. V. Novikov, J. W. Tomm, P. Werner, B. Fuhrmann, J. Schilling, and P. N. Racec, Semiconductors 48, 1178 (2014).CrossRefADSGoogle Scholar
  15. 15.
    V. G. Talalaev, G. E. Cirlin, B. V. Novikov, B. Fuhrmann, P. Werner, and J. W. Tomm, Appl. Phys. Lett. 106, 013104 (2015).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Senichev, V. G. Talalaev, J. W. Tomm, B. V. Novikov, P. Werner, and G. E. Cirlin, Phys. Status Solidi (RRL) 5, 385 (2011).CrossRefADSGoogle Scholar
  17. 17.
    S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, Surf. Sci. 361–362, 778 (1996).CrossRefGoogle Scholar
  18. 18.
    S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, Phys. Rev. B 60, 8276 (1999).CrossRefADSGoogle Scholar
  19. 19.
    C. Lobo, N. Perret, D. Morris, J. Zou, D. J. H. Cockayne, M. B. Johnston, M. Gal, and R. Leon, Phys. Rev. B 62, 2737 (2000).CrossRefADSGoogle Scholar
  20. 20.
    A. Patane, A. Polimeni, P. C. Main, M. Henini, and L. Eaves, Appl. Phys. Lett. 75, 814 (1999).CrossRefADSGoogle Scholar
  21. 21.
    H. Y. Liu, B. Xu, Q. Gong, D. Ding, F. Q. Liu, Y. H. Chen, W. H. Jiang, X. L. Ye, Y. F. Li, Z. Z. Sun, J. F. Zhang, J. B. Liang, and Z. G. Wang, J. Cryst. Growth 210, 451 (2000).CrossRefADSGoogle Scholar
  22. 22.
    K. Mukai and M. Sugawara, Appl. Phys. Lett. 74, 3963 (1996).CrossRefADSGoogle Scholar
  23. 23.
    M. B. Smirnov, V. G. Talalaev, B. V. Novikov, S. V. Sarangov, N. D. Zakharov, P. Werner, U. Gösele, J. W. Tomm, and G. E. Cirlin, Phys. Status Solidi B 247, 347 (2010).CrossRefADSGoogle Scholar
  24. 24.
    H. Lee, W. Yang, and P. C. Sercel, Phys. Rev. B 55, 9757 (1997).CrossRefADSGoogle Scholar
  25. 25.
    Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, J. Appl. Phys. 84, 3342 (1998).CrossRefADSGoogle Scholar
  26. 26.
    A. Polimeni, A. Patance, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 5064 (1999).CrossRefADSGoogle Scholar
  27. 27.
    Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, J. Appl. Phys. 82, 4489 (1997).CrossRefADSGoogle Scholar
  28. 28.
    A. D. Lucio, L. A. Cury, F. M. Matinaga, J. F. Sampaio, A. A. Bernussi, and W. de Carvalho, J. Appl. Phys. 86, 537 (1999).CrossRefADSGoogle Scholar
  29. 29.
    G. Bacher, H. Schweizer, J. Kovac, and A. Forchel, Phys. Rev. B 43, 9312 (1991).CrossRefADSGoogle Scholar
  30. 30.
    V. G. Talalaev, Vestnik SPb. Univ., Ser. 4, No. 4, 20 (2001).Google Scholar
  31. 31.
    D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. la Scala, and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).CrossRefADSGoogle Scholar
  32. 32.
    Z. M. Wang, Self-Assembled Quantum Dots (Springer, New York, 2008), chap. 5.CrossRefGoogle Scholar
  33. 33.
    P. N. Racec and L. I. Goray, WIAS Preprint No. 1898 (Weierstr.-Inst. Angew. Anal. Stochastik, Leibniz Inst., Berlin, 2013). http://wias-berlinde/publications/wiaspubl/ indexjsp?lang=1.Google Scholar
  34. 34.
    F. C. Michl, R. Winkler, and U. Roessler, Solid State Commun. 99, 13 (1996).CrossRefADSGoogle Scholar
  35. 35.
    D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, Phys. Rev. B 45, 4274 (1992).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. G. Talalaev
    • 1
    • 2
  • B. V. Novikov
    • 1
  • G. E. Cirlin
    • 3
    • 4
  • H. S. Leipner
    • 5
  1. 1.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvoretsRussia
  2. 2.Martin Luther University Halle-Wittenberg, ZIK SiLi-nanoHalleGermany
  3. 3.Academic University, Nanotechnology CenterRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Institute of Analytical Instrument DesignRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Martin Luther University Halle-Wittenberg, ICMSHalleGermany

Personalised recommendations