Advertisement

Semiconductors

, Volume 49, Issue 10, pp 1357–1360 | Cite as

Zinc-oxide-based nanostructured materials for heterostructure solar cells

  • A. A. Bobkov
  • A. I. Maximov
  • V. A. MoshnikovEmail author
  • P. A. Somov
  • E. I. Terukov
Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors

Abstract

Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

Keywords

Zinc Oxide Nanorod Array HMTA Nucleate Layer Flexible Electronic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Ali and D. J. Kang, Characterization and Reliability (Nova Science, New York, 2014), Vol. 2, p. 461.Google Scholar
  2. 2.
    I. A. Myasnikov, V. Ya. Sukharev, L. Yu. Kupriyanov, and S. A. Zav’yalov, Semiconductor Sensors in Physicochemical Investigations (Nauka, Moscow, 1991) [in Russian].Google Scholar
  3. 3.
    C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide (Springer, Berlin, Heidelberg, 2010).CrossRefGoogle Scholar
  4. 4.
    M. W. Zhu, N. Huang, J. Gong, B. Zhang, Z. J. Wang, C. Sun, and X. Jiang, Appl. Phys. A 103, 159 (2011).CrossRefADSGoogle Scholar
  5. 5.
    J. Liu, W. Wu, S. Bai, and Y. Qin, ACS Appl. Mater. Interfaces 3, 4197 (2011).CrossRefGoogle Scholar
  6. 6.
    P. Feng, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 87, 2131111 (2005).Google Scholar
  7. 7.
    Z. L. Wang and J. H. Song, Science 312, 242 (2006).CrossRefADSGoogle Scholar
  8. 8.
    T. T. Pham, K. Y. Lee, J. H. Lee, K. H. Kim, K. S. Shin, M. K. Gupta, B. Kumar, and S. W. Kim, Energy Environ. Sci. 6, 841 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Song, S. A. Kulinich, J. Yan, Z. Li, J. He, C. Kan, and H. Zeng, Adv. Mater. 25, 5750 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Zheng, L. Gu, D. Sun, X. L. Mo, and G. Chen, Mater. Sci. Eng. B 166, 104 (2010).CrossRefGoogle Scholar
  11. 11.
    N. Vorobyeva, M. Rumyantseva, D. Filatova, E. Konstantinov, D. Grishin, A. Abakumov, S. Turner, and A. Gaskov, Sens. Actuators B 182, 555 (2013).CrossRefGoogle Scholar
  12. 12.
    J.-J. Delaunay, N. Kakoiyama, and I. Yamada, Mater. Chem. Phys. 104, 141 (2007).CrossRefGoogle Scholar
  13. 13.
    D. Gedami, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarchin, Y. K. Mishra, and R. Adelung, Adv. Mat. 26, 1541 (2014).CrossRefGoogle Scholar
  14. 14.
    N. P. Klochko, E. S. Klepikova, G. S. Khripunov, N. D. Volkova, V. R. Kopach, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors 49, 214 (2015).CrossRefADSGoogle Scholar
  15. 15.
    V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, A. I. Maximov, S. S. Karpova, and A. A. Ponomareva, J. Non-Cryst. Sol. 356, 2020 (2010).CrossRefADSGoogle Scholar
  16. 16.
    L. K. Krasteva, D. Ts. Dimitrov, K. I. Papazova, N. K. Nikolaev, T. V. Peshkova, V. A. Moshnikov, I. E. Gracheva, S. S. Karpova, and N. V. Kaneva, Semiconductors 47, 586 (2013).CrossRefADSGoogle Scholar
  17. 17.
    S. S. Karpova, V. A. Moshnikov, A. I. Maximov, S. V. Myakin, and N. E. Kazantseva, Semiconductors 47, 1026 (2013).CrossRefADSGoogle Scholar
  18. 18.
    S. S. Karpova, V. A. Moshnikov, S. V. Myakin, and E. S. Kolovangina, Semiconductors 47, 392 (2013).CrossRefADSGoogle Scholar
  19. 19.
    I. A. Pronin, N. V. Kaneva, A. S. Bozhinova, I. A. Averin, K. I. Papazova, D. Ts. Dimitrov, and V. A. Moshnikov, Kinet. Catal. 55, 167 (2014).CrossRefGoogle Scholar
  20. 20.
    N. V. Kaneva, D. T. Dimitrov, and C. D. Dushkin, Appl. Surf. Sci. 257, 8113 (2011).CrossRefADSGoogle Scholar
  21. 21.
    A. S. Bozhinova, N. V. Kaneva, I. E. Kononova, S. S. Nalimova, Sh. A. Syuleiman, K. I. Papazova, D. Ts. Dimitrov, V. A. Moshnikov, and E. I. Terukov, Semiconductors 47, 1636 (2013).CrossRefADSGoogle Scholar
  22. 22.
    C. Ge, C. Xie, and S. Cai, Mater. Sci. Eng. B 137, 53 (2007).CrossRefGoogle Scholar
  23. 23.
    B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, and D. Mehandjiev, Mater. Chem. Phys. 123, 563 (2010).CrossRefGoogle Scholar
  24. 24.
    I. A. Pronin, D. T. Dimitrov, L. K. Krasteva, K. J. Papazova, I. A. Averin, A. S. Chanachev, A. S. Bojinova, A. Ts. Georgieva, N. D. Yakusheva, and V. A. Moshnikov, Sens. Actuators A: Phys. 206, 88 (2014).CrossRefGoogle Scholar
  25. 25.
    M. C. Carotta, A. Cervi, V. di Natale, S. Gherardi, A. Giberti, V. Guidi, D. Puzzovio, B. Vendemiati, G. Martinelli, M. Sacerdoti, D. Calestani, A. Zappettini, M. Zha, and L. Zanotti, Sens. Actuators B 137, 164 (2009).CrossRefGoogle Scholar
  26. 26.
    A. S. Komolov, P. J. Moller, S. A. Komolov, E. F. Lazneva, and J. Mortensen, Surf. Sci. 586, 129 (2005).CrossRefADSGoogle Scholar
  27. 27.
    S. A. Komolov, E. F. Lazneva, and A. S. Komolov, Phys. Low Dim. Struct., Nos. 11–12, 211 (2001).Google Scholar
  28. 28.
    A. S. Komolov and Yu. G. Aliaev, Phys. Low Dim. Struct., Nos. 5–6, 37 (2001).Google Scholar
  29. 29.
    Y. Nakamura, H. Yoshioka, M. Miyayama, and H. Yanagida, J. Electrochem. Soc. 137, 940 (1990).CrossRefGoogle Scholar
  30. 30.
    B. M. Vermenichev, O. L. Lisitskii, M. E. Kumekov, S. E. Kumekov, E. I. Terukov, and S. Zh. Tokmoldin, Semiconductors 41, 288 (2007).CrossRefADSGoogle Scholar
  31. 31.
    O. L. Lisitskii, M. E. Kumekov, S. E. Kumekov, and E. I. Terukov, Semiconductors 43, 765 (2009).CrossRefADSGoogle Scholar
  32. 32.
    Sh. R. Adilov, M. E. Kumekov, S. E. Kumekov, and E. I. Terukov, Semiconductors 47, 655 (2013).CrossRefADSGoogle Scholar
  33. 33.
    A. I. Maximov, V. A. Moshnikov, Yu. M. Tairov, and O. A. Shilova, Principles of Sol-Gel Technology of Nanocomposites (Elmor, St.-Petersburg, 2007) [in Russian].Google Scholar
  34. 34.
    Bin Liu and Hua Chun Zeng, Nano Res. 2, 177 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Bobkov
    • 1
  • A. I. Maximov
    • 1
  • V. A. Moshnikov
    • 1
    • 2
    • 3
    Email author
  • P. A. Somov
    • 1
  • E. I. Terukov
    • 1
    • 4
  1. 1.St. Petersburg Electrotechnical University LETISt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnic University (SPBSTU)St. PetersburgRussia
  3. 3.Yaroslav-the-Wise Novgorod State UniversityVeliky NovgorodRussia
  4. 4.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations