, Volume 49, Issue 9, pp 1207–1217 | Cite as

Photoluminescence properties of modulation-doped In x Al1–x As/In y Ga1–y As/In x Al1–x As structures with strained inas and gaas nanoinserts in the quantum well

  • G. B. Galiev
  • I. S. Vasil’evskii
  • E. A. Klimov
  • A. N. Klochkov
  • D. V. Lavruhin
  • S. S. Pushkarev
  • P. P. Maltsev
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena


The photoluminescence spectra of modulation-doped InAlAs/InGaAs/InAlAs heterostructures with quantum wells containing thin strained InAs and GaAs inserts are investigated. It is established that the insertion of pair InAs layers and/ or a GaAs transition barriers with a thickness of 1 nm into a quantum well leads to a change in the form and energy position of the photoluminescence spectra as compared with a uniform In0.53Ga0.47As quantum well. Simulation of the band structure shows that this change is caused by a variation in the energy and wave functions of holes. It is demonstrated that the use of InAs inserts leads to the localization of heavy holes near the InAs layers and reduces the energy of optical transitions, while the use of GaAs transition barriers can lead to inversion of the positions of the light- and heavy-hole subbands in the quantum well. A technique for separately controlling the light- and heavy-hole states by varying the thickness and position of the GaAs and InAs inserts in the quantum well is suggested.


GaAs Quantum Well Heavy Hole GaAs Layer Light Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.-H. Kim and J. A. del Alamo, IEEE Electron Dev. Lett. 31,806(2010).CrossRefADSGoogle Scholar
  2. 2.
    W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppel, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24,214002(2013).CrossRefADSGoogle Scholar
  3. 3.
    T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron Dev. Lett. 13,325(1992).CrossRefADSGoogle Scholar
  4. 4.
    A. Shilenas, J. Poela, K. Poela, V. Juciene, I. S. Vasil’evskii, G. B. Galiev, S. S. Pushkarev, and E. A. Klimov, Semiconductors 47,372(2013).CrossRefADSGoogle Scholar
  5. 5.
    T. Akazaki, J. Nitta, H. Takayanagi, T. Enoki, and K. Arai, J. Electron. Mater. 25,745(1996).CrossRefADSGoogle Scholar
  6. 6.
    D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, R. A. Khabibullin, V. A. Kul’bachinskii, and N. A. Yuzeeva, Semiconductors 46,484(2012).CrossRefADSGoogle Scholar
  7. 7.
    K. Pozela, A. Šilenas, J. Pozela, V. Juciene, G. B. Galiev, I. S. Vasil’evskii, and E. A. Klimov, Appl. Phys. A 109,233(2012).CrossRefADSGoogle Scholar
  8. 8.
    V. A. Kulbachinskii, N. A. Yuzeeva, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, R. A. Khabibullin, and D. S. Ponomarev, Semicond. Sci. Technol. 27,035021(2012).CrossRefADSGoogle Scholar
  9. 9.
    J. Pozela, K. Pozela, V. Juciene, and A. Shkolnic, Semicond. Sci. Technol. 26,014025(2011).CrossRefADSGoogle Scholar
  10. 10.
    X. Th. Zhu and H. Goronkin, Appl. Phys. Lett. 60,2141(1992).CrossRefADSGoogle Scholar
  11. 11.
    I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, K. Pozela, J. Pozela, V. Juciene, A. Suzhedelis, N. Zhurauskene, S. Kershulis, and V. Stankevich, Semiconductors 45,1169(2011).CrossRefADSGoogle Scholar
  12. 12.
    G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, A. N. Klochkov, D. V. Lavrukhin, S. S. Pushkarev, and P. P. Maltsev, Semiconductors 49,234(2015).CrossRefADSGoogle Scholar
  13. 13.
    X. Wallart, J. Lastennet, D. Vignaud, and F. Mollot, Appl. Phys. Lett. 87,043504(2005).CrossRefADSGoogle Scholar
  14. 14.
    H. Choi, J. Cho, M. Jeon, and Y. Jeong, J. Korean Phys. Soc. 54,643(2009).CrossRefADSGoogle Scholar
  15. 15.
    X. Z. Shang, Jing Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid State Electron. 51,85(2007).CrossRefADSGoogle Scholar
  16. 16.
    X. Wallart, B. Pinsard, and F. Mollot, J. Appl. Phys. 97,053706(2005).CrossRefADSGoogle Scholar
  17. 17.
    M. J. S. P. Brasil, R. E. Nahory, W. E. Quinn, M. C. Tamargo, and H. H. Farell, Appl. Phys. Lett. 60,1981(1992).CrossRefADSGoogle Scholar
  18. 18.
    S. M. Olsthoorn, F. A. J. M. Driessen, and L. J. Giling, J. Appl. Phys. 73,7804(1993).CrossRefADSGoogle Scholar
  19. 19.
    D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 76,2324(1994).CrossRefADSGoogle Scholar
  20. 20.
    D. Vignaud, X. Wallart, F. Mollot, and B. Semage, J. Appl. Phys. 84,2138(1998).CrossRefADSGoogle Scholar
  21. 21.
    V. Duez, O. Vanbesien, D. Lippens, D. Vignaud, X. Wallart, and F. Mollot, J. Appl. Phys. 85,2202(1999).CrossRefADSGoogle Scholar
  22. 22.
    S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).CrossRefGoogle Scholar
  23. 23.
    Y. Liu and H. Wang, J. Appl. Phys. 100,034505(2006).CrossRefADSGoogle Scholar
  24. 24.
    T. Ando and S. Mori, J. Phys. Soc. Jpn. 47,1518(1979).CrossRefADSGoogle Scholar
  25. 25.
    H. Taguchi, H. Murakami, and M. Oura, Jpn. J. Appl. Phys. 45,8549(2006).CrossRefADSGoogle Scholar
  26. 26.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23,5048(1981).CrossRefADSGoogle Scholar
  27. 27.
    G. Hendorfer, M. Seto, and H. Ruckser, Phys. Rev. B 48,2328(1993).CrossRefADSGoogle Scholar
  28. 28.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89,5815(2001).CrossRefADSGoogle Scholar
  29. 29.
    Y. Nishio, T. Tange, and N. Hirayama, Phys. Status Solidi A 210,2423(2013).CrossRefGoogle Scholar
  30. 30.
    M. P. C. M. Krijin, Semicond. Sci. Technol. 6,27(1991).MATHCrossRefADSGoogle Scholar
  31. 31.
    L. P. Avakyants, P. Yu. Bokov, A. V. Chervyakov, G. B. Galiev, E. A. Klimov, I. S. Vasil’evskii, and V. A. Kulbachinskii, Semicond. Sci. Technol. 21,462(2006).CrossRefADSGoogle Scholar
  32. 32.
    E. Tournie, K. H. Ploog, and C. Alibert, Appl. Phys. Lett. 61,2808(1992).CrossRefADSGoogle Scholar
  33. 33.
    H. Xie, J. Katz, and W. I. Wang, Appl. Phys. Lett. 59,3601(1991).CrossRefADSGoogle Scholar
  34. 34.
    Y. H. Wang, Sheng S. Li, J. Chu, and Pin Ho, Appl. Phys. Lett. 64,727(1994).CrossRefADSGoogle Scholar
  35. 35.
    G. B. Galiev, A. L. Vasil’ev, R. M. Imamov, E. A. Klimov, P. P. Maltsev, S. S. Pushkarev, M. Yu. Presnyakov, and I. N. Trun’kin, Crystallogr. Rep. 59,900(2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. B. Galiev
    • 1
  • I. S. Vasil’evskii
    • 2
  • E. A. Klimov
    • 1
  • A. N. Klochkov
    • 1
  • D. V. Lavruhin
    • 1
  • S. S. Pushkarev
    • 1
  • P. P. Maltsev
    • 1
  1. 1.Institute of Ultra-High Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations