Advertisement

Semiconductors

, Volume 49, Issue 8, pp 1111–1118 | Cite as

Determination of the technological growth parameters in the InAs-GaAs system for the MOCVD synthesis of “Multimodal” InAs QDs

  • R. A. Salii
  • S. A. Mintairov
  • P. N. Brunkov
  • A. M. Nadtochiy
  • A. S. Payusov
  • N. A. Kalyuzhnyy
Fabrication, Treatment, and Testing of Materials and Structures

Abstract

The specific features of growth in the InAs-GaAs system by the metal-organic chemical vapor deposition method are studied. The dependences of the In content of the InxGa1 − x As solid solution and of the InAs growth rate on the molar flow of In in a wide temperature range (480–700°C) are determined. The growth processes of InAs quantum dots (QDs) on GaAs with different surface misorientations are examined. The conditions are found in which InAs QDs are formed with a small number of defects and at a high density on a GaAs “sublayer” grown at a high rate. An epitaxial technique is developed for the synthesis of InAs QDs with multimodal size distribution and an extended photoluminescence spectrum, which can be effectively used in designing solar cells with QDs in the active region.

Keywords

GaAs Metal Organic Chemical Vapor Deposition GaAs Surface Molecular Beam Epit Multimodal Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Progr. Photovolt.: Res. Appl. 22, 701 (2014).CrossRefGoogle Scholar
  2. 2.
    R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    W. Guter, J. Schone, S. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    D. C. Law, X. Q. Liu, J. C. Boisvert, E. M. Redher, C. M. Fetzer, S. Mesropian, R. R. King, K. M. Edmondson, B. Jun, R. L. Woo, D. D. Krut, P. T. Chiu, D. M. Bhusari, S. K. Sharma, and N. H. Karam, in Proceedings of the 38th IEEE Photovoltaic Specicalists Conference (Austin, TX, 2012), p. 003 146.Google Scholar
  5. 5.
    A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, J. Appl. Phys. 89, 2268 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semiconductors 32, 343 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Blokhin, A. V. Sakharov, A. M. Nadtochiy, A. S. Payusov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kalyuzhnyi, and M. Z. Shvarts, Semiconductors 43, 514 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    C. G. Bailey, D. V. Forbes, S. J. Polly, Z. S. Bittner, Y. Dai, Chelsea Mackos, R. P. Raffaelle, and S. M. Hubbard, IEEE J. Photovolt. 2, 269 (2012).CrossRefGoogle Scholar
  10. 10.
    N. A. Kalyuzhnyy, S. A. Mintairov, M. A. Mintairov, and V. M. Lantratov, in Proceedings of the 24th European Photovoltaics Solar Energy Conference (Hamburg, Germany, 2009), p. 538.Google Scholar
  11. 11.
    L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. le Roux, Appl. Phys. Lett. 47, 1099 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Sevryuk, P. N. Brunkov, I. V. Shal’nev, A. A. Gutkin, G. V. Klimko, S. V. Gronin, S. V. Sorokin, and S. G. Konnikov, Semiconductors 47, 930 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    K. Sears, S. Mokkapati, H. H. Tan, and C. Jagadish, in Self-Assembled Quantum Dots, Ed. by Z. M. Wang (Springer, 2008), ch. 12, p. 359.Google Scholar
  14. 14.
    G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed. (Academic Press, San Diego, 1999), ch. 3.4.Google Scholar
  15. 15.
    Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, and L. L. Chang, Phys. Rev. B 54, 11528 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, J. Appl. Phys. 84, 3342 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, M. V. Maximov, E. S. Semenova, A. P. Vasil’ev, A. E. Zhukov, N. N. Ledentsov, V. M. Ustinov, and D. Bimberg, Semiconductors 39, 1188 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    B. Bansal, J. Appl. Phys. 100, 093197 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • R. A. Salii
    • 1
  • S. A. Mintairov
    • 1
  • P. N. Brunkov
    • 1
    • 2
    • 3
  • A. M. Nadtochiy
    • 1
    • 4
  • A. S. Payusov
    • 1
    • 2
  • N. A. Kalyuzhnyy
    • 1
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Academic University, Nanotechnology Research and Education CentreRussian Academy of SciencesSt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics and Optics “ITMO”St. PetersburgRussia
  4. 4.“Solar Dots” OOOSt. PetersburgRussia

Personalised recommendations