Semiconductors

, Volume 49, Issue 8, pp 1057–1061 | Cite as

Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

  • A. V. Baklanov
  • A. A. Gutkin
  • N. A. Kalyuzhnyy
  • P. N. Brunkov
Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors

Abstract

Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bhushan, Principles and Applications of Tribology, 2nd ed. (Wiley, Chichester, 2013) p. 980.CrossRefGoogle Scholar
  2. 2.
    Nanotribology and Nanomechanics: Measurement Techniques and Nanomechanics, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2011), Vol. 1, p. 623.Google Scholar
  3. 3.
    Nanotribology and Nanomechanics: Nanotribology, Biomimetics and Industrial Applications, Ed. by B. Bhushan (Springer, Berlin, Heidelberg, 2011), Vol. 2, p. 1017.Google Scholar
  4. 4.
    B. Bhushan and A. V. Goldadem, Wear 244, 104 (2000).CrossRefGoogle Scholar
  5. 5.
    M. Chiesa and R. Garcia, Appl. Phys. Lett. 96, 263112 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    Hao Sun, Haibin Chu, Jinyong Wang, Lei Ding, and Yan Li, Appl. Phys. Lett. 96, 083112 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    D. J. Lacks and R. M. Sankaran, J. Phys. D: Appl. Phys. 44, 453001 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. Mirkowska, M. Kratzer, C. Teichert, and H. Flachberger, Chem. Ing. Tech. 86, 857 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    P. N. Brunkov, V. V. Goncharov, M. E. Rudinskii, A. A. Gutkin, N. Yu. Gordeev, V. M. Lantratov, N. A. Kalyuzhnyi, S. A. Mintairov, R. V. Sokolov, and S. G. Konnikov, Semiconductors 47, 1170 (2013).ADSCrossRefGoogle Scholar
  12. 12.
  13. 13.
    J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    I. Szlufarska, M. Chandross, and R. W. Carpick, J. Phys. D: Appl. Phys. 41, 123001 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Livshits and A. L. Shluger, Phys. Rev. B 56, 12482 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    U. Landman, W. D. Luetke, and M. W. Ribarski, J. Vacuum. Sci. Technol. A 7, 2829 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    U. Landman, W. D. Luetke, and E. M. Ringer, Wear 153, 3 (1992).CrossRefGoogle Scholar
  18. 18.
    H. Bracht, M. Norseng, E. E. Haller, K. Eberl, and M. Cardona, Solid State Commun. 112, 301 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 55, 1327 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    E. W. Williams and H. B. Bebb, in Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beer (Academic Press, New York, London, 1972), Vol. 8, p. 321.Google Scholar
  21. 21.
    P. Krispin, J. Appl. Phys. 65, 3470 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    T. Ishida, K. Maeda, and S. Takeuchi, Appl. Phys. 21, 257 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Baklanov
    • 1
  • A. A. Gutkin
    • 2
  • N. A. Kalyuzhnyy
    • 2
  • P. N. Brunkov
    • 1
    • 2
    • 3
  1. 1.Institute of Physics, Nanotechnology, and TelecommunicationsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics and Optics (ITMO)St. PetersburgRussia

Personalised recommendations