, Volume 49, Issue 7, pp 915–920 | Cite as

Investigations of nanodimensional Al2O3 films deposited by ion-plasma sputtering onto porous silicon

  • P. V. SeredinEmail author
  • A. S. Lenshin
  • D. L. Goloshchapov
  • A. N. Lukin
  • I. N. ArsentyevEmail author
  • A. D. Bondarev
  • I. S. Tarasov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena


The purpose of this study is the deposition of nanodimensional Al2O3 films on the surface of nanoporous silicon and also fundamental investigations of the structural, optical, and morphological properties of these materials. Analyzing the results obtained here, it is possible to state that ultrathin nanostructured Al2O3 films can be obtained in the form of threads oriented in one direction and located at a distance of 300–500 nm from each other using ion-plasma sputtering on a layer of porous silicon. Such a mechanism of aluminum-oxide growth is conditioned by the crystallographic orientation of the initial single-crystalline silicon wafer used to fabricate the porous layer. The results of optical spectroscopy show that the Al2O3/por-Si/Si(111) heterophase structure perfectly transmits electromagnetic radiation in the range of 190–900 nm. The maximum in the dispersion of the refractive index obtained for the Al2O3 film grown on por-Si coincides with the optical-absorption edge for aluminum oxide and is located in the region of ~5.60 eV. This fact is confirmed by the results of calculations of the optical-absorption spectrum of the Al2O3/por-Si/Si(lll) heterophase structure. The Al2O3 films formed on the heterophase-structure surface in the form of nanodimensional structured threads can serve as channels of optical conduction and can be rather efficiently introduced into conventional technologies, which are of great importance in microelectronics and optoelectronics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 87, 182904 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and Peide D. Ye, IEEE Electron Dev. Lett. 28, 935 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    P. V. Seredin, D. L. Goloshchapov, A. N. Lukin, A. S. Lenshin, A. D. Bondarev, I. N. Arsentyev, L. S. Vavilova, and I. S. Tarasov, Semiconductors 48, 1527 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    Dong Lei, Xuegong Yu, Lihui Song, Xin Gu, Genhu Li, and Deren Yang, Appl. Phys. Lett. 99, 052103 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    V. Naumann, M. Otto, R. B. Wehrspohn, and Ch. Hagendorf, J. Vacuum Sci. Technol. A 30, 04D 106 (2012).Google Scholar
  6. 6.
    A. S. Lenshin, V. M. Kashkarov, P. V. Seredin, B. L. Agapov, D. A. Minakov, V. N. Tsipenyuk, and E. P. Domashevskaya, Tech. Phys. 59, 224 (2014).CrossRefGoogle Scholar
  7. 7.
    V. M. Kashkarov, A. S. Lenshin, P. V. Seredin, B. L. Agapov, and V. N. Tsipenyuk, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 6, 776 (2012).CrossRefGoogle Scholar
  8. 8.
    A. S. Lenshin, V. M. Kashkarov, P. V. Seredin, D. A. Minakov, B. L. Agapov, M. A. Kuznetsova, V. A. Moshnikov, and E. P. Domashevskaya, Semiconductors 46, 1079 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    P. V. Seredin, V. E. Ternovaya, A. V. Glotov, A. S. Lenshin, I. N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, H. Leiste, and T. Prutskij, Phys. Solid State 55, 2161 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    P. V. Seredin, A. V. Glotov, A. S. Lenshin, I. N. Arsentyev, D. A. Vinokurov, T. Prutskij, H. Leiste, and M. Rinke, Semiconductors 48, 21 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    P. V. Seredin, E. P. Domashevskaya, V. E. Ternovaya, I. N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, and T. Prutskij, Phys. Solid State 55, 2169 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    P. V. Seredin, A. V. Glotov, V. E. Ternovaya, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 45, 481 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Phys. B: Condens. Matter 405, 4607 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    S. Bietti et al., Appl. Phys. Lett. 103, 262106 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, et al., Opt. Quantum Electron. 44, 527 (2012).CrossRefGoogle Scholar
  16. 16.
    Y. B. Bolkhovityanov and O. P. Pchelyakov, Phys. Usp. 51, 437 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    V. Kashkarov, I. Nazarikov, A. Lenshin, V. Terekhov, S. Turishchev, B. Agapov, K. Pankov, and E. Domashevskaya, Phys. Status Solidi C: Curr. Top. Solid State Phys. 6, 1557 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].Google Scholar
  19. 19.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, Berlin, 2005).Google Scholar
  21. 21.
    Furu Zhong, Changjun Tie, Xiaoyi Lv, Jiaqing Mo, Zhenhong Jia, and Tao Jiang, Adv. Mater. Res. 148–149, 841 (2011).CrossRefGoogle Scholar

Copyright information

© Nauka/Interperiodica 2015

Authors and Affiliations

  • P. V. Seredin
    • 1
    Email author
  • A. S. Lenshin
    • 1
  • D. L. Goloshchapov
    • 1
  • A. N. Lukin
    • 1
  • I. N. Arsentyev
    • 2
    Email author
  • A. D. Bondarev
    • 2
  • I. S. Tarasov
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations