Advertisement

Semiconductors

, Volume 49, Issue 6, pp 724–728 | Cite as

Recombination activity of interfaces in multicrystalline silicon

  • S. M. Peshcherova
  • E. B. Yakimov
  • A. I. Nepomnyashchikh
  • L. A. Pavlova
  • O. V. Feklisova
Proceedings of the Conference “Silicon-2014”, Irkutsk, July 7–12, 2014 Surfaces, Interfaces, and Thin Films

Abstract

The electrical activity of grain boundaries in multicrystalline silicon grown from metallurgical silicon by the Bridgman method is investigated by the method of electron-beam induced current. The main tendencies of atypical manifestation of the local electrical activity of Σ3{111} and Σ9{110} special boundaries are revealed. The structural features of the grain boundaries after selective etching and the impurity-distribution characteristics in multicrystalline silicon are determined by the methods of electron backscattering diffraction and electron-probe microanalysis.

Keywords

Special Boundary Bridgman Method Recombination Activity Multicrystalline Silicon Backscatter Electron Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, and S. Tsurekawa, J. Appl. Phys. 96, 5490 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    S. Tsurekawa, K. Kido, and T. Watanabe, Mater. Sci. Eng. A 462, 61 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Chen, T. Sekiguchi, D. Yang, F. Yin, et al., J. Appl. Phys. 96, 5490 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    Zh. Xi, D. Yang, J. Chen, and T. Sekiguchi, Mater. Sci. Semicond. Proc. 9, 304 (2006).CrossRefGoogle Scholar
  5. 5.
    E. B. Yakimov, Poverkhnost’, No. 3, 15 (2003).Google Scholar
  6. 6.
    E. B. Yakimov, J. Phys.: Condens. Matter. 14, 13069 (2002).ADSGoogle Scholar
  7. 7.
    S. M. Peshcherova, A. I. Nepomnyashchikh, L. A. Pavlova, I. A. Eliseev, and R. V. Presnyakov, Semiconductors 48, 476 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    B. Cunningham, H. Strunk, and D. G. Ast, Appl. Phys. Lett. 40, 237 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa, and M. Yamada, Appl. Phys. Lett. 93, 105 (2008).Google Scholar
  10. 10.
    S. Brantov, O. Feklisova, and E. Yakimov, Phys. Status Solidi C 8, 1384 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    E. B. Yakimov, O. V. Feklisova, and S. K. Brantov, Solid State Phenom. 178–179, 106 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Chen, T. Sekiguchi, and D. Yang, Phys. Status Solidi C 4, 2908 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. M. Peshcherova
    • 1
  • E. B. Yakimov
    • 2
  • A. I. Nepomnyashchikh
    • 1
  • L. A. Pavlova
    • 1
  • O. V. Feklisova
    • 2
  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations