, Volume 49, Issue 6, pp 736–740 | Cite as

Aluminoborosilicate glasses codoped with rare-earth elements as radiation-protective covers for solar cells

  • E. V. Malchukova
  • A. S. Abramov
  • A. I. Nepomnyashchikh
  • E. I. Terukov
Proceedings of the Conference “Silicon-2014”, Irkutsk, July 7–12, 2014 Amorphous, Vitreous, and Organic Semiconductors


The radiation hardness of aluminoborosilicate glasses codoped with rare-earth ions of Sm, Gd or Sm, Eu in various ratios is studied. The effect of codoping and β irradiation at a dose of 109 Gr on the optical transmission and electron paramagnetic resonance spectra is examined. It is found that the introduction of Sm and Gd codopants in a 1 : 1 ratio reduces the number of radiation defects and raises the transmission of irradiated glasses in the visible spectral range.


Solar Cell Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Radiation Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Chapind, S. Fullerc, and L. Pearsong, J. Appl. Phys. 25, 676 (1954).ADSCrossRefGoogle Scholar
  2. 2.
    K. M Fyles, Glass Technol. 32, 40 (1991).Google Scholar
  3. 3.
    S. M. Brekhovskikh and V. A. Tyul’nin, Radiation Centers in Inorganic Glasses (Energoatomizdat, Moscow, 1988) [in Russian].Google Scholar
  4. 4.
    V. A. Letin, L. S. Gatsenko, et al., Analysis of State and Protection Optimization of Solar Panels from of Destructive Factors Effect during Long-Term Work in Space (NTO NPP Kvant, Moscow, 1995), p. 22 [in Russian].Google Scholar
  5. 5.
    G. O. Karapetyan, Opt. Spektrosk. 3, 641 (1957).Google Scholar
  6. 6.
    E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, J. Non-Cryst. Sol. 353, 2397 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, J. Non-Cryst. Sol. 352, 297 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    E. Malchukova and B. Boizot, Mater. Res. Bull. 45, 1299 (2010).CrossRefGoogle Scholar
  9. 9.
    C. M. Brodbeck and L. E. Iton, J. Chem. Phys. 83, 4285 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    L. E. Iton, S. M. Brodbeck, S. L. Suib, and G. D. Stucky, J. Chem. Phys. 79, 1185 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    B. Sreedhar, Ch. Sumalatha, and K. Kojima, J. Non-Cryst. Sol. 192–193, 203 (1995).CrossRefGoogle Scholar
  12. 12.
    B. Boizot, N. Ollier, F. Olivier, G. Petite, D. Ghaleb, and E. Malchukova, Nucl. Instrum. Methods Phys. Res. B 240, 146 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    M. Qian, L. Li, H. Li, and D. M. Strachan, J. Non-Cryst. Sol. 333, 1 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    D. Ehrt and P. Ebeling, Glass Technol. 44, 46 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Malchukova
    • 1
  • A. S. Abramov
    • 1
    • 2
  • A. I. Nepomnyashchikh
    • 3
  • E. I. Terukov
    • 1
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Research and Development Center for Thin Film Technologies in Power Engineering at Ioffe Physical-Technical InstituteSt. PetersburgRussia
  3. 3.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations