Advertisement

Semiconductors

, Volume 49, Issue 5, pp 649–657 | Cite as

Silicon vacancy-related centers in non-irradiated 6H-SiC nanostructure

  • N. T. Bagraev
  • E. Yu. Danilovskii
  • D. S. Gets
  • E. N. Kalabukhova
  • L. E. Klyachkin
  • A. A. Koudryavtsev
  • A. M. Malyarenko
  • V. A. Mashkov
  • D. V. Savchenko
  • B. D. Shanina
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

We present the first findings of the silicon vacancy related centers identified in the non-irradiated 6H-SiC nanostructure using the electron spin resonance (ESR) and electrically-detected (ED) ESR technique. This planar 6H-SiC nanostructure represents the ultra-narrow p-type quantum well confined by the δ-barriers heavily doped with boron on the surface of the n-type 6H-SiC(0001) wafer. The new EDESR technique by measuring the only magnetoresistance of the 6H-SiC nanostructure under the high frequency generation from the δ-barriers appears to allow the identification of the isolated silicon vacancy centers as well as the triplet center with spin state S = 1. The same triplet center that is characterized by the large value of the zero-field splitting constant D and anisotropic g-factor is revealed by the ESR (X-band) method. The hyperfine (HF) lines in the ESR and EDESR spectra originating from the HF interaction with the 14N nucleus seem to attribute this triplet center to the N-V Si defect.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Quantum Well External Cavity Edge Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, Phys. Rev. Lett. 102, 057403 (2009).CrossRefADSGoogle Scholar
  2. 2.
    P. G. Baranov, A. A. Soltamova, D. O. Tolmachev, N. G. Romanov, R. A. Babunts, F. M. Shakhov, S. V. Kidalov, A. Y. Vul’, G. V. Mamin, S. B. Orlinskii, and N. I. Silkin, Small 7, 1533 (2011).CrossRefGoogle Scholar
  3. 3.
    D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012).CrossRefADSGoogle Scholar
  4. 4.
    P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri, T. Teraji, M. Koizumi, J. Isoya, R. Fischer, L. P. McGuinness, B. Naydenov, and F. Jelezko, Phys. Rev. Lett. 111, 067601 (2013).CrossRefADSGoogle Scholar
  5. 5.
    H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Nature Phys. 10, 157 (2013).CrossRefADSGoogle Scholar
  6. 6.
    N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).CrossRefGoogle Scholar
  7. 7.
    N. T. Bagraev, A. A. Gippius, L. E. Klyachkin, and A. M. Malyarenko, Mater. Sci. Forum 258–263, 1833 (1997).CrossRefGoogle Scholar
  8. 8.
    N. T. Bagraev, E. Yu. Danilovskii, D. S. Gets, A. K. Kaveev, L. E. Klyachkin, G. I. Kropotov, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, V. A. Mashkov, I. A. Tsibizov, D. I. Tsypishka, and I. A. Vinerov, J. Phys.: Conf. Ser. 486, 01201 (2014).Google Scholar
  9. 9.
    N. T. Bagraev, A. D. Bouravleuv, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 462 (2002).CrossRefGoogle Scholar
  10. 10.
    A. Slaoui, E. Fogarassy, J. C. Muller, and P. Siffert, J. Phys. Colloq. 44(C5), 65 (1983).CrossRefGoogle Scholar
  11. 11.
    N. T. Bagraev, W. Gehlhoff, and L. E. Klyachkin, Solid State Phenom. 47–48, 589 (1995).Google Scholar
  12. 12.
    N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).ADSGoogle Scholar
  13. 13.
    J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature 432, 197 (2004).CrossRefADSGoogle Scholar
  14. 14.
    P. G. Baranov, A. P. Bundakova, A. A. Soltamova, S. B. Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt, Phys. Rev. B 83, 125203 (2011).CrossRefADSGoogle Scholar
  15. 15.
    C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, Appl. Phys. Lett. 102, 193507 (2013).CrossRefADSGoogle Scholar
  16. 16.
    P. G. Baranov, Def. Diff. Forum 148–149, 129 (1997).CrossRefGoogle Scholar
  17. 17.
    X.-F. He, N. B. Manson, and P. T. H. Fisk, Phys. Rev. B 47, 8816 (2000).CrossRefADSGoogle Scholar
  18. 18.
    M. V. Muzafarova, I. V. Ilyin, E. N. Mokhov, V. I. Sankin, and P. G. Baranov, Mater. Sci. Forum 527–529, 555 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. T. Bagraev
    • 1
    • 2
  • E. Yu. Danilovskii
    • 1
  • D. S. Gets
    • 1
  • E. N. Kalabukhova
    • 3
  • L. E. Klyachkin
    • 1
  • A. A. Koudryavtsev
    • 1
  • A. M. Malyarenko
    • 1
  • V. A. Mashkov
    • 2
  • D. V. Savchenko
    • 3
    • 4
  • B. D. Shanina
    • 3
  1. 1.Ioffe Physicaltechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  4. 4.Institute of PhysicsAcademy of Sciences of Czech RepublicPrahaCzech Republic

Personalised recommendations