Advertisement

Semiconductors

, Volume 49, Issue 2, pp 259–263 | Cite as

Adaptation of the model of tunneling in a metal/CaF2/Si(111) system for use in industrial simulators of MIS devices

  • M. I. VexlerEmail author
  • Yu. Yu. Illarionov
  • S. E. Tyaginov
  • T. Grasser
Physics of Semiconductor Devices
  • 28 Downloads

Abstract

An approach toward simplification of the model of the tunneling transport of electrons through a thin layer of crystalline calcium fluoride into a silicon (111) substrate with subsequent implementation in simulators of semiconductor devices is suggested. The validity of the approach is proven by comparing the results of modeling using simplified formulas with the results of precise calculations and experimental data. The approach can be applied to calculations of tunneling currents in structures with any crystalline insulators on Si (111).

Keywords

Field Effect Transistor Tunneling Current Effective Thickness Calcium Fluoride Local Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Watanabe, Y. Iketani, and M. Asada, Jpn. J. Appl. Phys. 39, L964 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    M. Watanabe, T. Funayama, T. Teraji, and N. Sakamaki, Jpn. J. Appl. Phys. 39, L716 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    T. Waho and F. Yanagawa, IEEE Electron. Dev. Lett. 9, 548 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    M. I. Vexler, Yu. Yu. Illarionov, S. M. Suturin, V. V. Fedorov, and N. S. Sokolov, Phys. Solid State 52, 2357 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. Yu. Illarionov, M. I. Vexler, S. M. Suturin, V. V. Fedorov, N. S. Sokolov, K. Tsutsui, and K. Takahashi, Microelectron. Eng. 88, 1291 (2011).CrossRefGoogle Scholar
  6. 6.
    M. I. Vexler, S. E. Tyaginov, Yu. Yu. Illarionov, Yew Kwang Sing, Ang Diing Shenp, V. V. Fedorov, and D. V. Isakov, Semiconductors 47, 686 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    M. Depas, B. Vermeire, P. W. Mertens, R. L. van Meirhaeghe, and M. M. Heyns, Solid State Electron. 38, 1465 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    MINIMOS-NT User’s Guide (Institute for Microelectronics, TU Wien, Austria).Google Scholar
  9. 9.
    M. I. Vexler, S. E. Tyaginov, A. F. Shulekin, and I. V. Grekhov, Semiconductors 40, 1109 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    A. Schenk, Advanced Physical Models for Silicon Device Simulations (Springer, Wien, New York, 1998), ch. 5.CrossRefGoogle Scholar
  11. 11.
    C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation (Springer, Wien, New York, 2003).CrossRefzbMATHGoogle Scholar
  12. 12.
    S. E. Tyaginov, D. S. Osintsev, Yu. Yu. Illarionov, J. M. Park, H. Enichlmair, M. I. Vexler, and T. Grasser, in Proceedings of the 11th Russian Conference on Semiconductor Physics (St.-Petersburg, 2013), p. 441.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. I. Vexler
    • 1
    Email author
  • Yu. Yu. Illarionov
    • 1
    • 2
  • S. E. Tyaginov
    • 1
    • 2
  • T. Grasser
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.TU ViennaInstitute for MicroelectronicsViennaAustria

Personalised recommendations