Semiconductors

, Volume 48, Issue 12, pp 1605–1612 | Cite as

Optically detected cyclotron resonance in heavily boron-doped silicon nanostructures on n-Si (100)

  • N. T. Bagraev
  • R. V. Kuzmin
  • A. S. Gurin
  • L. E. Klyachkin
  • A. M. Malyarenko
  • V. A. Mashkov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

Electron and hole cyclotron resonance at a frequency of 94 GHz is detected by a change in the intensity of photoluminescence lines whose positions are identical to those of dislocation luminescence lines D1 and D2 in single-crystal silicon and in heavily boron-doped silicon nanostructures on the Si (100) surface. The angular dependence of the spectrum of the optically detected cyclotron resonance corresponds to the tensor of the electron and hole effective mass in single-crystal silicon, and the resonance-line width indicates long carrier free-path times close to 100 ps. The results obtained are discussed within the framework of the interrelation of the electron-vibration coupling to charge and spin correlations in quasi-one-dimensional chains of dangling bonds in silicon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pavesi, J. Phys.: Condens. Matter 15, R1169 (2003).ADSGoogle Scholar
  2. 2.
    V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Zeibt, and W. Schröter, Appl. Phys. Lett. 84, 2106 (2004).CrossRefADSGoogle Scholar
  3. 3.
    V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, and A. Izotov, Phys. Status Solidi A 202, 901 (2005).CrossRefADSGoogle Scholar
  4. 4.
    N. Drozdov, A. Patrin, and V. Tkachev, JETP Lett. 23, 597 (1976).ADSGoogle Scholar
  5. 5.
    P. G. Baranov, Yu. P. Veshchunov, R. A. Zhitnikov, N. G. Romanov, and Yu. G. Shreter, JETP Lett. 26, 249 (1977).ADSGoogle Scholar
  6. 6.
    R. Romestain and C. Weisbuch, Phys. Rev. Lett. 45, 2067 (1980).CrossRefADSGoogle Scholar
  7. 7.
    B. C. Cavenett and E. J. Pakulis, Phys. Rev. B 32, 8449 (1985).CrossRefADSGoogle Scholar
  8. 8.
    M. Godlewski, W. M. Chen, and B. Monemar, Crit. Rev. Solid State Mater. Sci. 19, 241 (1994).CrossRefADSGoogle Scholar
  9. 9.
    N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klya- chkin, and A. M. Malyarenko, J. Phys.: Condens. Matter. 20, 164202 (2008).ADSGoogle Scholar
  10. 10.
    N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, Semiconductors 43, 1441 (2009).CrossRefADSGoogle Scholar
  11. 11.
    N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kud- ryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).CrossRefGoogle Scholar
  12. 12.
    N. T. Bagraev, W. Gehlhoff, L. E. Klyachkin, and A. Naser, Def. Dif. Forum 143–147, 1003 (1997).CrossRefGoogle Scholar
  13. 13.
    W. Frank, U. Gosele, H. Mehrer, and A. Seeger, in Diffusion in Crystalline Solids, Ed. by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984).Google Scholar
  14. 14.
    N. T. Bagraev, A. D. Bouravleuv, W. Gehlhoff, L. E. Klyachkin, A. M. Malyarenko, and S. A. Rykov, Def. Dif. Forum 194–199, 673 (2001).CrossRefGoogle Scholar
  15. 15.
    N. T. Bagraev, A. D. Bouravleuv, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 439 (2002).CrossRefADSGoogle Scholar
  16. 16.
    R. B. Hammond, T. C. Mcoill, and J. W. Mayer, Phys. Rev. B 13, 3566 (1976).CrossRefADSGoogle Scholar
  17. 17.
    G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).CrossRefADSGoogle Scholar
  18. 18.
    W. Gehlhoff, N. T. Bagraev, and L. E. Klyachkin, Solid State Phenom. 47–48, 589 (1995).Google Scholar
  19. 19.
    W. Gehlhoff, N. T. Bagraev, and L. E. Klyachkin, Mater. Sci. Forum 196–201, 467 (1995).CrossRefGoogle Scholar
  20. 20.
    N. T. Bagraev, A. I. Gusarov, and V. A. Mashkov, Sov. Phys. JETP 65, 548 (1987).Google Scholar
  21. 21.
    N. T. Bagraev, A. I. Gusarov, and V. A. Mashkov, Sov. Phys. JETP 68, 816 (1989).Google Scholar
  22. 22.
    V. A. Grazhulis, V. V. Kveder, and V. Yu. Mukhina, Phys. Status Solidi A 43, 407 (1977).CrossRefADSGoogle Scholar
  23. 23.
    V. A. Grazhulis, V. V. Kveder, and V. Yu. Mukhina, Phys. Status Solidi A 44, 107 (1977).CrossRefADSGoogle Scholar
  24. 24.
    V. V. Kveder, Yu. A. Osipyan, W. Schröter, and G. Zoth, Phys. Status Solidi A 72, 701 (1982).CrossRefADSGoogle Scholar
  25. 25.
    N. T. Bagraev and V. A. Mashkov, Solid State Commun. 51, 515 (1984).CrossRefADSGoogle Scholar
  26. 26.
    N. T. Bagraev and V. A. Mashkov, Solid State Commun. 65, 1111 (1988).CrossRefADSGoogle Scholar
  27. 27.
    D. Kaplan, I. Solomon, and N. Mott, J. Phys. Lett. 39, L51 (1978).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. T. Bagraev
    • 1
    • 2
  • R. V. Kuzmin
    • 1
  • A. S. Gurin
    • 1
  • L. E. Klyachkin
    • 1
  • A. M. Malyarenko
    • 1
  • V. A. Mashkov
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations