Semiconductors

, Volume 48, Issue 11, pp 1507–1511 | Cite as

Planar microcavity containing luminescent diamond particles with embedded silicon-vacancy color centers in its active layer

  • S. A. Grudinkin
  • N. A. Feoktistov
  • A. V. Medvedev
  • A. A. Dukin
  • V. G. Golubev
Physics of Semiconductor Devices
  • 61 Downloads

Abstract

A planar hybrid microcavity containing isolated diamond particles with embedded silicon-vacancy (Si-V) color centers in its active layer is fabricated by plasma-enhanced chemical vapor deposition. Distributed Bragg reflectors are produced on the basis of alternating quarter-wave a-Si1 − xCx:H and a-SiO2 layers. The color centers are controllably introduced from the gas phase during the course of growth of the diamond particles. A narrowing to 5 nm of the zero-phonon line at a wavelength of 738 nm and suppression of the phonon wing in the photoluminescence spectrum of the Si-V color centers are achieved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, 2001).CrossRefGoogle Scholar
  2. 2.
    J. E. Field, The Properties of Natural and Synthetic Diamond (Academic Press, New York, 1992).Google Scholar
  3. 3.
    I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, Rep. Progr. Phys. 74, 076501 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    I. Aharonovich, A. D. Greentree, and S. Prawer, Nature Photon. 5, 397 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J. O. Orwa, A. D. Greentree, I. Aharonovich, A. D. C. Alver, J. van Donkelaar, A. Stacey, and S. Prawer, J. Luminesc. 130, 1646 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, Phys. Rep. 528, 1 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    T. Feng and B. D. Schwartz, J. Appl. Phys. 73, 1415 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmuller-Nethl, M. Schreck, and C. Becher, New J. Phys. 15, 043005 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Turukhin, C. H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, Phys. Rev. B 54, 16488 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Voros, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali, and J. Wrachtrup, Nature Nanotechnol. 9, 54 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    T. D. Merson, S. Castelletto, I. Aharonovich, A. Turbic, T. J. Kilpatrick, and A. M. Turnley, Opt. Lett. 38, 4170 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, Nature Nanotechnol. 7, 69 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. Loncar and A. Faraon, MRS Bull. 38, 144 (2013).CrossRefGoogle Scholar
  14. 14.
    P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, Appl. Phys. Lett. 95, 191115 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    M. Larsson, K. N. Dinyari, and H. Wang, Nano Lett. 9, 1447 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    S. Schietinger, T. Schroder, and O. Benson, Nano Lett. 8, 3911 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    I. Bayn, B. Meyler, J. Salzman, and R. Kalish, New J. Phys. 13, 025018 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Dumeige, R. Alléaume, P. Grangier, F. Treussart, and J.-F. Roch, New J. Phys. 13, 025015 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Appl. Phys. Lett. 77, 3009 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Golubev, A. A. Dukin, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and N. A. Feoktistov, Semiconductors 35, 1213 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. E 67, 046602 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Basov, M. Rahn, M. Pars, I. I. Vlasov, I. Sildos, A. P. Bolshakov, V. G. Golubev, and V. G. Ralchenko, Phys. Status Solidi A 206, 009 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K. V. Bogdanov, A. V. Baranov, A. Ya. Vul’, and V. G. Golubev, J. Phys. D: Appl. Phys. 45, 062001 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    I. B. Yanchuk, M. Y. Valakh, A. Y. Vul’, V. G. Golubev, S. A. Grudinkin, N. A. Feoktistov, A. Richter, and B. Wolf, Diamond Relat. Mater. 13, 266 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    N. A. Feoktistov, V. I. Sakharov, I. T. Serenkov, V. A. Tolmachev, I. V. Korkin, A. E. Aleksenskiy, A. Ya. Vul’, and V. G. Golubev, Tech. Phys. 56, 718 (2011).CrossRefGoogle Scholar
  26. 26.
    A. E. Aleksenskiy, E. D. Eydelman, and A. Ya. Vul’, Nanosci. Nanotechnol. Lett. 3, 68 (2011).CrossRefGoogle Scholar
  27. 27.
    N. A. Feoktistov, V. G. Golubev, S. A. Grudinkin, T. S. Perova, R. A. Moore, and A. Ya. Vul’, in Proceedings of the SPIE Opto-Ireland 2005: Nanotechnology and Nanophotonics (Dublin, Ireland, 2005), vol. 5824, p. 157.Google Scholar
  28. 28.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).Google Scholar
  29. 29.
    A. V. Medvedev, A. A. Dukin, A. B. Pevtsov, C. Sibilia, N. A. Feoktistov, and V. G. Golubev, Tech. Phys. Lett. 33, 976 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    A. A. Dukin, N. A. Feoktistov, S. A. Grudinkin, A. V. Medvedev, A. B. Pevtsov, V. G. Golubev, M. Centini, and C. Sibilia, J. Appl. Phys. 103, 063101 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. A. Grudinkin
    • 1
    • 2
  • N. A. Feoktistov
    • 1
    • 2
  • A. V. Medvedev
    • 1
  • A. A. Dukin
    • 1
  • V. G. Golubev
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations