Advertisement

Semiconductors

, Volume 48, Issue 10, pp 1374–1380 | Cite as

Planar light-emitting microcavities based on hydrogenated amorphous silicon carbide

  • A. V. Medvedev
  • N. A. Feoktistov
  • S. A. Grudinkin
  • A. A. Dukin
  • V. G. Golubev
Physics of Semiconductor Devices

Abstract

The plasma-enhanced chemical vapor deposition (PECVD) method is used to fabricate planar Fabry-Perot microcavities (MCs) with an active region emitting light at the boundary between the visible and infrared (IR) spectral ranges. The MCs comprise an α-Si1 − x C x :H active layer with an increased carbon content and distributed Bragg reflectors (DBRs) constituted by alternating nonemitting α-Si1 − x C x :H/α-SiO2 layers. The active layer and the DBRs are grown in a single technological cycle. Owing to the high optical contrast and low absorption of the layers constituting the DBRs, a high Q factor of the microcavities (Q = 316) and high emission directivity from the MCs for three pairs of layers in the DBRs are achieved. The intensity of the room-temperature photoluminescence exceeds by two orders of magnitude the emission intensity of an identical α-Si1 − x C x :H layer without DBRs. Comparison of the experimental transmittance spectra and those calculated by the transfer-matrix method with consideration for dispersion of the real and imaginary parts of the refractive index of α-Si1 − x C x :H is used to estimate the degree of systematic deviation of the layer thicknesses in the DBRs and to determine the upper limit of the absorption coefficient in α-Si1 − x C x :H layers.

Keywords

Active Layer Resonance Wavelength Plasma Enhance Chemical Vapor Deposition Distribute Bragg Reflector Directivity Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Giorgis, C. Vinegoni, and L. Pavesi, Phys. Rev. B 61, 4693 (2000).CrossRefADSGoogle Scholar
  2. 2.
    F. Giorgis, P. Mandracci, L. Dal Negro, C. Mazzoleni, and L. Pavesi, J. Non-Cryst. Sol. 266–269, 588 (2000).CrossRefGoogle Scholar
  3. 3.
    J.-F. Leliévre, J. de la Torre, A. Kaminski, G. Bremond, M. Lemiti, R. El Bouayadi, D. Araujo, T. Epicier, R. Monna, M. Pirot, P.-J. Ribeyron, and C. Jaussaud, Thin Solid Films 511–512, 103 (2006).CrossRefGoogle Scholar
  4. 4.
    R. S. Sussmann and R. Ogden, Philos. Mag. B 44, 137 (1981).CrossRefADSGoogle Scholar
  5. 5.
    I. Watanabe, Y. Hata, A. Morimoto, and T. Shimizu, Jpn. J. Appl. Phys. Lett. 21, 613 (1982).CrossRefADSGoogle Scholar
  6. 6.
    V. A. Vasil’ev, A. S. Volkov, E. Musabekov, E. I. Terukov, V. E. Chelnokov, S. V. Chernyshev, and Yu. M. Shernyaev, Sov. Phys. Semicond. 24, 445 (1990).Google Scholar
  7. 7.
    L. R. Tessler and I. Solomon, Phys. Rev. E 52, 10962 (1995).CrossRefGoogle Scholar
  8. 8.
    T. Ma, J. Xu, J. Du, W. Li, X. Huang, and K. Chen, J. Appl. Phys. 88, 6408 (2000).CrossRefADSGoogle Scholar
  9. 9.
    J. Xu, L. Yang, Y. Rui, J. Mei, X. Zhang, W. Li, Z. Ma, L. Xu, X. Huang, and K. Chen, Solid State Commun. 133, 565 (2005).CrossRefADSGoogle Scholar
  10. 10.
    K. Sel and I. Gunes, Thin Solid Films 520, 7062 (2012).CrossRefADSGoogle Scholar
  11. 11.
    F. Giorgis, Appl. Phys. Lett. 77, 522 (2000).CrossRefADSGoogle Scholar
  12. 12.
    M. Bayindir, S. Tanriseven, A. Aydinli, and E. Ozbay, Appl. Phys. A 73, 125 (2001).CrossRefADSGoogle Scholar
  13. 13.
    A. Serpenguzel and S. Tanriseven, Appl. Phys. Lett. 78, 1388 (2001).CrossRefADSGoogle Scholar
  14. 14.
    V. Ballarini, G. Barucca, E. Bennici, C. F. Pirri, C. Ricciardi, E. Tresso, and F. Giorgis, Physica E 16, 591 (2003).CrossRefADSGoogle Scholar
  15. 15.
    C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, J. Non-Cryst. Sol. 352, 1294 (2006).CrossRefADSGoogle Scholar
  16. 16.
    B. Qian, S. Chen, D. Y. Chen, J. W. Wei, J. Xu, P. G. Han, W. Li, L. Xu, and K. J. Chen, Thin Solid Films 516, 1120 (2008).CrossRefADSGoogle Scholar
  17. 17.
    J. Xu, J. Mei, D. Chen, S. Chen, W. Li, and K. Chen, Diamond Relat. Mater. 14, 1999 (2005).CrossRefADSGoogle Scholar
  18. 18.
    D. Chen, J. Xu, B. Qian, S. Chen, J. Mei, W. Li, L. Xu, and K. Chen, Mater. Chem. Phys. 111, 279 (2008).CrossRefGoogle Scholar
  19. 19.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Appl. Phys. Lett. 77, 3009 (2000).CrossRefADSGoogle Scholar
  20. 20.
    V. G. Golubev, A. A. Dukin, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and N. A. Feoktistov, Semiconductors 35, 1213 (2001).CrossRefADSGoogle Scholar
  21. 21.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, J. Non-Cryst. Sol. 299–302, 694 (2002).CrossRefGoogle Scholar
  22. 22.
    A. V. Medvedev, A. B. Pevtsov, S. A. Grudinkin, N. A. Feoktistov, I. T. Serenkov, and V. G. Golubev, Nanotechnology 19, 315201 (2008).CrossRefADSGoogle Scholar
  23. 23.
    A. V. Medvedev, N. A. Feoktistov, A. B. Pevtsov, and V. G. Golubev, Semiconductors 39, 1356 (2005).CrossRefADSGoogle Scholar
  24. 24.
    V. G. Golubev, A. A. Dukin, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and N. A. Feoktistov, Semiconductors 37, 832 (2003).CrossRefADSGoogle Scholar
  25. 25.
    A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. E 67, 046602 (2003).CrossRefADSGoogle Scholar
  26. 26.
    Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, J. Appl. Phys. 53, 5273 (1982).CrossRefADSGoogle Scholar
  27. 27.
    C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, J. Appl. Phys. 96, 3987 (2004).CrossRefADSGoogle Scholar
  28. 28.
    A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, Opt. Express 16, 13509 (2008).CrossRefADSGoogle Scholar
  29. 29.
    A. B. Pevtsov, A. V. Zherzdev, N. A. Feoktistov, G. Juska, T. Muschik, and R. Schwarz, Int. J. Electron. 78, 289 (1995).CrossRefGoogle Scholar
  30. 30.
    N. A. Feoktistov, N. L. Ivanova, L. E. Morozova, Yu. A. Nikulin, A. P. Onokhov, A. B. Pevtsov, and R. Schwarz, Mater. Res. Soc. Symp. Proc. 420, 189 (1996).CrossRefGoogle Scholar
  31. 31.
    Fu Guang-Sheng, Wang Xin-Zhan, Lu Wan-Bing, Dai Wan-Lei, and Li Xing-Kuo, Yu Wei, Chin. Phys. B 21, 107802 (2012).CrossRefGoogle Scholar
  32. 32.
    K. D. Chokuette, MRS Bull. 27, 507 (2002).CrossRefGoogle Scholar
  33. 33.
    S. Li, Y. Rui, Y. Cao, J. Xu, and K. Chen, Front. Optoelectron. 5, 107 (2012).CrossRefGoogle Scholar
  34. 34.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).Google Scholar
  35. 35.
    A. V. Medvedev, A. A. Dukin, A. A. Pevtsov, C. Sibilia, N. A. Feoktistov, and V. G. Golubev, Tech. Phys. Lett. 33, 976 (2007).CrossRefADSGoogle Scholar
  36. 36.
    A. A. Dukin, N. A. Feoktistov, S. A. Grudinkin, A. V. Medvedev, A. B. Pevtsov, V. G. Golubev, M. Centini, and C. Sibilia, J. Appl. Phys. 103, 063101 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Medvedev
    • 1
  • N. A. Feoktistov
    • 1
    • 2
  • S. A. Grudinkin
    • 1
    • 2
  • A. A. Dukin
    • 1
  • V. G. Golubev
    • 1
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations