Semiconductors

, Volume 48, Issue 9, pp 1178–1184 | Cite as

Effect of nanobridges on the emission spectra of a quantum dot-quantum well tunneling pair

  • V. G. Talalaev
  • G. E. Cirlin
  • L. I. Goray
  • B. V. Novikov
  • M. E. Labzovskaya
  • J. W. Tomm
  • P. Werner
  • B. Fuhrmann
  • J. Schilling
  • P. N. Racec
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

Emission in the narrow spectral range 950–1000 nm is obtained at the nanobridge optical transition involving experimentally and theoretically observed hybrid states in the InGaAs system, i.e., quantum dot-nanobridge-quantum well. It is experimentally shown that the oscillator strength of the new transition sharply increases in the built-in electric field of a pin junction. In the mode of weak currents in the system under study, the nanobridge transition is the dominant electroluminescence channel. At current densities >10 A cm2, nanobridge “burning” is observed, after which the system becomes a “quasi-classical” quantum dot-quantum well tunneling pair separated by a barrier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    P. Bhattacharya and S. Ghosh, Appl. Phys. Lett. 80, 3482 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z.-K. Wu, J. Urayama, K. Kim, and T. B. Norris, IEEE J. Quant. Electron. 39, 952 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    P. Bhattacharya and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Y. B. Samsonenko, V. A. Egorov, and G. E. Cirlin, Appl. Phys. Lett. 93, 031105 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gosele, Yu. B. Samsonenko, and G. E. Cirlin, Semiconductors 44, 1050 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Talalaev, A. A. Tonkikh, N. D. Zakharov, A. V. Senichev, J. W. Tomm, P. Werner, B. V. Novikov, L. V. Asryan, B. Fuhrmann, J. Schilling, H. S. Leipner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Semiconductors 46, 1460 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, L. V. Asryan, N. D. Zakharov, P. Werner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Vestn. SPb. Univ., Ser. 4, No. 3, 34 (2012).Google Scholar
  9. 9.
    T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao, J. Appl. Phys. 63, 5491 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    M. Nido, M. G. W. Alexander, and W. W. Ruehle, Appl. Phys. Lett. 56, 355 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    J. N. Zeng, I. Souma, Y. Amemiya, and Y. Oka, J. Surf. Anal. 3, 529 (1997).Google Scholar
  12. 12.
    R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Phys. Rev. B 58, R10151 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    A. Tackeushi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokovama, Phys. Rev. B 62, 1568 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    Y. I. Mazur, Z. M. Wang, G. G. Tarasov, G. J. Salamo, J. W. Tomm, and V. Talalaev, Phys. Rev. B 71, 235313 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Mazur, B. L. Liang, Z. M. Wang, D. Guzun, G. J. Salamo, Z. Y. Zhuchenko, and G. G. Tarasov, Appl. Phys. Lett. 98, 083118 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Mazur, V. G. Dorogan, E. Marega, Z. Y. Zhuchenko, M. E. Ware, M. Benamara, G. G. Tarasov, P. Vasa, C. Lienau, and G. J. Salamo, J. Appl. Phys. 108, 074316 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    P. N. Racec and L. I. Goray, WIAS Preprint No 1898 (2013); http://wias-berlin.de/publications/wias-publ/index.jsp?lang=1 Google Scholar
  18. 18.
    A. V. Senichev, V. G. Talalaev, J. W Tomm, B. V. Novikov, P. Werner, and G. E. Cirlin, Phys. Status Solidi RRL 5, 385 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. G. Talalaev
    • 1
    • 2
    • 3
    • 4
  • G. E. Cirlin
    • 4
    • 5
    • 6
    • 7
    • 10
  • L. I. Goray
    • 5
    • 6
  • B. V. Novikov
    • 4
  • M. E. Labzovskaya
    • 4
  • J. W. Tomm
    • 3
  • P. Werner
    • 1
  • B. Fuhrmann
    • 8
  • J. Schilling
    • 2
    • 8
  • P. N. Racec
    • 9
  1. 1.Max Planck Institute of Microstructure PhysicsHalle (Saale)Germany
  2. 2.ZIK SiLi-nanoMartin Luther University Halle-WittenbergHalleGermany
  3. 3.Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany
  4. 4.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia
  5. 5.Saint Petersburg Academic University-Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  6. 6.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  7. 7.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia
  8. 8.Interdisciplinary Center of Materials ScienceMartin Luther UniversityHalleGermany
  9. 9.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  10. 10.Saint Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations