Advertisement

Semiconductors

, Volume 48, Issue 8, pp 1079–1087 | Cite as

Efficiency droop in GaN LEDs at high current densities: Tunneling leakage currents and incomplete lateral carrier localization in InGaN/GaN quantum wells

  • N. I. Bochkareva
  • Y. T. Rebane
  • Y. G. ShreterEmail author
Physics of Semiconductor Devices

Abstract

The phenomenon of the emission efficiency droop of InGaN/GaN quantum wells (QWs) in light-emitting diode p-n structures is studied. The influence exerted by two basic processes on the emission efficiency is considered: tunnel injection into a QW and incomplete lateral carrier localization in compositional fluctuations of the band-gap width in InGaN. The sharp efficiency peak at low currents and the rapid efficiency droop with increasing current are due to tunneling leakage currents along extended defects, which appear as a result of a local increase in the electron hopping conductivity via the depletion n region and a corresponding local decrease in the height of the injection p barrier. A less sharp efficiency peak and a weak, nearly linear, decrease in efficiency with increasing current are caused by incomplete lateral carrier localization in the QW due to slowing-down of the carrier energy-relaxation rate and to the nonradiative recombination of mobile carriers.

Keywords

Light Emit Diode Carrier Localization Tail State Mobility Edge Quasi Fermi Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Nature Mater. 5, 810 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. pt. 1 38, 3976 (1999).CrossRefGoogle Scholar
  3. 3.
    Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    J. Iveland, L. Martinelly, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett. 79, 3723 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181 (103) (2007).CrossRefGoogle Scholar
  9. 9.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Semiconductors 41, 87 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    T. J. Badcook, S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, Jpn. J. Appl. Phys. 52, 08JK10 (2013).CrossRefGoogle Scholar
  13. 13.
    J. Mickevi ius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gacka, Appl. Phys. Lett. 103, 011906 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 46, 1032 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    N. I. Bochkareva, Y. T. Rebane, and Y. G. Shreter, Appl. Phys. Lett. 103, 191101 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Yu. S. Lelikov, F. E. Latyshev, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 44, 794 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    P. Perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G. Eliseev, and M. Osinski, Appl. Phys. Lett. 70, 2993 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Narukava, Y. Kavakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, Appl. Phys. Lett. 92, 053502 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, and Yu. G. Shreter, Semiconductors 39, 594 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979).Google Scholar
  25. 25.
    R. J. Molnar, T. Lei, and T. D. Moustakas, Appl. Phys. Lett. 62, 72 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 47, 127 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    A. Rose, Concept in Photoconductivity and Allied Problems (Krieger, New York, 1978).Google Scholar
  28. 28.
    T. Tiedje and A. Rose, Solid State Commun. 37, 49 (1980).ADSCrossRefGoogle Scholar
  29. 29.
    J. Orenstein and M. Kastner, Phys. Rev. Lett. 46, 1421 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    D. Monroe, Phys. Rev. Lett. 54, 146 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    C. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Narukava, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, Appl. Phys. Lett. 74, 1460 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    Y. H. Cho, T. J. Schmidt, S. Bidnyk, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 61, 7571 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, Appl. Phys. Lett. 85, 5143 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • Y. T. Rebane
    • 1
  • Y. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations