Semiconductors

, Volume 48, Issue 3, pp 350–353 | Cite as

On the self-structuring of single-crystal silicon wafers under inductive heating in vacuum

  • M. G. Mynbaeva
  • S. P. Lebedev
  • A. A. Lavrent’ev
  • K. D. Mynbaev
  • A. A. Golovatenko
  • A. A. Lebedev
  • V. I. Nikolaev
Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • 37 Downloads

Abstract

The self-organized structuring of the surface of single-crystal silicon wafers under high-frequency annealing in a carbon-containing atmosphere is reported. The effect can be used to develop new maskless methods for the fabrication of structured materials for different functional purposes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    III-Nitride Devices and Nanoengineering, Ed. by Zhe Chuan Feng (Imperia College Press, London, 2008).Google Scholar
  2. 2.
    M. Ali, O. Svensk, L. Riuttanen, M. Kruse, S. Suihkonen, A. E. Romanov, P. T. Törm H. Lipsanen, M. A. Odnoblyudov, and V. E. Bougrov,, Semicond. Sci. Technol. 27, 082002 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    H. Y. Lin, Y. J. Chen, C. L. Chang, X. F. Li, C. H. Kuo, S. C. Hsu, and C. Y. Liu, J. Mater. Res. 27, 971 (2012).ADSGoogle Scholar
  4. 4.
    K. D. Lee, R. Sjodin, and T. Eriksson, LEDs Mag. 37, 51 (2010).Google Scholar
  5. 5.
    T. G. Volova, E. I. Shishatskaya, and P. V. Mironov, Materials for Medicine, Cell and Tissue Engineering, Electron. School-Book (IPK SFU, Krasnoyarsk, 2009) [in Russian].Google Scholar
  6. 6.
    Silicon Carbide Biotechnology: Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Ed. by S. E. Saddow (Amsterdam, Elsevier, 2012).Google Scholar
  7. 7.
    M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth 303, 472 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. G. Mynbaeva, A. A. Sitnikova, D. A. Kirilenko, and I. S. Kotousova, J. Phys. D: Appl. Phys. 45, 335303 (2012).CrossRefGoogle Scholar
  9. 9.
    D. G. Gromov, S. A. Gavrilov, E. N. Redichev, and R. M. Ammosov, Phys. Solid State 49, 178 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Ievlev, V. S. Ilyin, S. B. Kushev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 791 (2009).CrossRefGoogle Scholar
  11. 11.
    V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Nauka, Moscow, 1967; Plenum Press, New York, 1969).Google Scholar
  12. 12.
    M. G. Mynbaeva, P. L. Abramov, A. A. Lebedev, A. S. Tregubova, D. P. Litvin, A. V. Vasil’ev, T. Yu. Chemekova, and Yu. N. Makarov, Semiconductors 45, 828 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    Ya. E. Geguzin, The Drop (Nauka, Moscow, 1977) [in Russian].Google Scholar
  14. 14.
    S. D. McCullen, S. Ramaswamy, L. I. Clarke, and R. E. Gorga, WIREs Nanomed. Nanobiotechnol. 1, 369 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Trends Biotechnol. 29, 205 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. G. Mynbaeva
    • 1
  • S. P. Lebedev
    • 1
  • A. A. Lavrent’ev
    • 1
  • K. D. Mynbaev
    • 1
    • 3
  • A. A. Golovatenko
    • 1
    • 2
    • 3
  • A. A. Lebedev
    • 1
  • V. I. Nikolaev
    • 1
    • 2
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Perfect Crystals LLCSt. PetersburgRussia
  3. 3.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations