Semiconductors

, Volume 48, Issue 3, pp 344–349 | Cite as

Study of the electrical properties of individual (Ga,Mn)As nanowires

  • A. D. Bouravleuv
  • N. V. Sibirev
  • E. P. Gilstein
  • P. N. Brunkov
  • I. S. Mukhin
  • M. Tchernycheva
  • A. I. Khrebtov
  • Yu. B. Samsonenko
  • G. E. Cirlin
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

Arrays of (Ga, Mn)As nanowire crystals are synthesized by molecular-beam epitaxy. Electronbeam lithography made possible the fabrication of electric contacts to individual nanowires. The influence of the annealing temperature on the properties of the contacts is studied. The optical annealing temperature is determined to be 160°C. It is found that an increase in the annealing temperature yields structure degradation. From studies of the current-voltage characteristics of the individual nanowire structures, a number of their electrical parameters, such as the resistivity and the mobility of charge carriers are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ling, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieberand, and M. Lundstrom, Nano Lett. 7, 642 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. Chuang, Q. Gao, R. Kapadia, A. C. Ford, J. Guo, and A. Javey, Nano Lett. 13, 555 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    G. Larrieu and X.-L. Han, Nanoscale 5, 2437 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    T. Brykkert, L. Wernersson, T. Lowgren, and L. Samuelson, Nanotechnology 17, S227 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. D. Bouravleuv, D. V. Beznasyuk, E. P. Gil’shtein, M. Tchernycheva, A. De Luna Bugallo, L. Rigutti, L. Yu, Yu. Proskuryakov, I. V. Shtrom, M. A. Timofeeva, Yu. B. Samsonenko, A. I. Khrebtov, and G. E. Cirlin, Semiconductors 47, 808 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    M. Tchernycheva, L. Rigutti, G. Jacopin, A. de Luna Bugallo, P. Lavenus, F. H. Julien, M. Timofeeva, A. D. Bouravleuv, G. E. Cirlin, V. Dhaka, H. Lipsanen, and L. Largeau, Nanotechnology 23, 265402 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K. M. A. Rahman, Phys. Status Solidi RRL. doi:10. 1002/pssr.2013071091Google Scholar
  8. 8.
    B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, Science 329, 830 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, Nano Lett. 12, 96 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. B. Samsonenko, G. E. Cirlin, A. I. Khrebtov, A. D. Bouravleuv, N. K. Polyakov, V. P. Ulin, V. G. Dubrovskii, and P. Werner, Semiconductors 45, 431 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    A. Casadei, P. Krogstrup, M. Heiss, J. A. Röhr, C. Colombo, T. Ruelle, S. Upadhyay, C. B. Sørensen, J. Nygåd, and A. Fontcubertai Morral, Appl. Phys. Lett. 102, 013117 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    Ch. Bloemers, T. Grap, M. I. Lepsa, J. Moers, St. Trellenkamp, D. Gruetzmacher, H. Lueth, and Th. Schapers, Appl. Phys. Lett. 101, 152106 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    J. P. Grave, D. Liang, and S. Jin, Nano Lett. 13, 2704 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, Nature Nanotech. 7, 718 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    H. Ohno, D. Cheba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 21 (2000).CrossRefGoogle Scholar
  16. 16.
    J. Sadowski, P. Dluzewski, S. Kret, E. Janik, E. Lusakowska, J. Kanski, A. Presz, F. Terki, S. Charar, and D. Tang, Nano Lett. 7, 2724 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. Rudolph, M. Soda, M. Kiessling, T. Wojtowicz, D. Schuh, W. Wegscheider, J. Zweck, C. Back, and E. Reiger, Nano Lett. 9, 3860 (2009).CrossRefGoogle Scholar
  18. 18.
    A. D. Bouravleuv, G. E. Cirlin, V. V. Romanov, N. T. Bagraev, E. S. Brilinskaya, N. A. Lebedeva, S. V. Novikov, N. Lipsanen, and V. G. Dubrovskii, Semiconductors 46, 179 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    A. D. Bouravleuv, G. O. Abdrashitov, and G. E. Cirlin, Tech. Phys. Lett. 38, 816 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    A. Bouravleuv, G. Cirlin, V. Sapega, P. Werner, A. Savin, and H. Lipsanen, J. Appl. Phys. 113, 144303 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    P. Nemec, V. Novak, N. Tesarova, E. Rozkotova, H. Reichlova, D. Butkovicova, F. Trojanek, K. Olejnik, P. Maly, R. P. Campion, B. L. Gallagher, J. Sinova, and T. Jungwirth, Nature Commun. 4, 1422 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    A. Kovacs, J. Sadowski, T. Kasama, M. Duchamp, and R. E. Dunin-Borkowski, J. Phys. D: Appl. Phys. 46, 145309 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, and L.-M. Peng, Adv. Funct. Mater. 17, 2478 (2007).CrossRefGoogle Scholar
  24. 24.
    S. H. Lee, Y. S. Yu, H. J. Kim, S. W. Hwang, and D. Ahn, J. Korean Phys. Soc. 51, S298 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    S. N. Mohammad, J. Appl. Phys. 108, 034311 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    X. He, J. Scharer, J. Booske, and S. Sengele, J. Vac. Sci. Technol. B 26, 770 (2008).CrossRefGoogle Scholar
  27. 27.
    F. A. Padovani and R. Stratton, Solid State Electron. 9, 695 (1966).ADSCrossRefGoogle Scholar
  28. 28.
    Landolt-Börnstein, New Series, Group IV Elements, IV-IV and III-V Compounds, Group III/17A-22A-41A1b, Pt. B: Electronic, Transport, Optical and Other Properties, Ed. by O. Madelung (Springer Materials, Berlin, 2002).Google Scholar
  29. 29.
    Y. Umemoto, W. J. Schaff, H. Park, and L. F. Eastman, Appl. Phys. Lett. 62, 1964 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    F. Glas and B. Daudin, Phys. Rev. B 86, 174112 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    W. Chen, V. G. Dubrovskii, X. Liu, T. Xu, R. Lardé, J. P. Nys, B. Grandidier, D. Stiévenard, G. Patriarche, and P. Pareige, J. Appl. Phys. 111, 094909 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. D. Bouravleuv
    • 1
    • 4
  • N. V. Sibirev
    • 1
    • 2
    • 4
  • E. P. Gilstein
    • 1
    • 2
  • P. N. Brunkov
    • 1
    • 2
  • I. S. Mukhin
    • 2
    • 3
  • M. Tchernycheva
    • 5
  • A. I. Khrebtov
    • 2
  • Yu. B. Samsonenko
    • 1
    • 3
  • G. E. Cirlin
    • 1
    • 4
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Nanotechnology Research and Education CenterSt. Petersburg Academic UniversitySt. PetersburgRussia
  3. 3.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Institut d’Electronique Fondamentale UMR CNRS 8622Université Paris Sud 11Orsay CedexFrance

Personalised recommendations