Advertisement

Semiconductors

, Volume 48, Issue 2, pp 268–271 | Cite as

Chemical vapor deposition of isolated spherical diamond particles with embedded silicon-vacancy color centers onto the surface of synthetic opal

  • S. A. Grudinkin
  • N. A. Feoktistov
  • K. V. Bogdanov
  • M. A. Baranov
  • A. V. Baranov
  • A. V. Fedorov
  • V. G. Golubev
Fabrication, Treatment, and Testing of Materials and Structures

Abstract

Isolated spherical diamond particles with embedded silicon-vacancy color centers are synthesized on a patterned surface of synthetic opal by chemical vapor deposition methods. The phase composition of the particles is determined and their structural and luminescence properties are studied. Prospects are discussed for the application of these particles as integrated spherical diamond microcavities, in which color centers are situated directly in the microcavities.

Keywords

Color Center Diamond Particle Whisper Gallery Mode Chemical Vapor Deposition Process Hydrogen Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. B. Yanchuk, M. Y. Valakh, A. Y. Vul’, V. G. Golubev, S. A. Grudinkin, N. A. Feoktistov, A. Richter, and B. Wolf, Diamond Relat. Mater. 13, 266 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    J. E. Field, The Properties of Natural and Synthetic Diamond (Academic Press, 1992).Google Scholar
  3. 3.
    V. S. Vavilov and E. A. Konorova, Sov. Phys. Usp. 19, 301 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    N. A. Feoktistov, S. A. Grudinkin, M. V. Rybin, A. N. Smirnov, A. E. Aleksenskii, A. Ya. Vul’, and V. G. Golubev, Tech. Phys. Lett. 37, 322 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 47, 14850 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.-C. Arnault, A. Thorel, J.-P. Boudou, P. A. Curmi, and F. Treussart, ASC Nano 3, 3955 (2009).CrossRefGoogle Scholar
  8. 8.
    J. O. Orwa, A. D. Greentree, I. Aharonovich, A. D. C. Alves, J. V. Donkelaar, A. Stacey, and S. Prawer, J. Luminesc. 130, 1646 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    I. Aharonovich, A. D. Greentree, and S. Prawer, Nature Photon. 5, 397 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, Rep. Progr. Phys. 74, 076501 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, New J. Phys. 13, 035024 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    E. Neu, D. Steinmetz, J. Riedrich-Moller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, New J. Phys. 13, 025012 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, Appl. Phys. Lett. 95, 191115 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    M. Larsson, K. N. Dinyari, and H. Wang, Nano Lett. 9, 1447 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    S. Schietinger, T. Schroder, and O. Benson, Nano Lett. 8, 3911 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    J. Riedrich-Moller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mucklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, Nature Nanotechnol. 7, 69 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    Y. P. Rakovich and J. F. Donegan, Laser Photon. Rev. 4, 179 (2010).CrossRefGoogle Scholar
  18. 18.
    A. Weller and M. Himmelhaus, Appl. Phys. Lett. 89, 241105 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    I. I. Vlasov, A. S. Barnard, V. G. Ralchenko, O. I. Lebedev, M. V. Kanzyuba, A. V. Saveliev, V. I. Konov, and E. Goovaerts, Adv. Mater. 21, 808 (2009).CrossRefGoogle Scholar
  20. 20.
    A. A. Basov, M. Rahn, M. Pars, I. I. Vlasov, I. Sildos, A. P. Bolshakov, V. G. Golubev, and V. G. Ralchenko, Phys. Status Solidi A 206, 2009 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, Appl. Phys. Lett. 98, 243107 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Turukhin, C. H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, Phys. Rev. B 54, 16488 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K. V. Bogdanov, A. V. Baranov, A. Ya. Vul’, and V. G. Golubev, J. Phys. D: Appl. Phys. 45, 062001 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    J. P. Goss, P. R. Briddon, and M. J. Shaw, Phys. Rev. B 76, 075204 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, Nucl. Instrum. Methods Phys. Res. B 242, 182 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, Phys. Rev. A 74, 051802 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid. J. 73, 546 (2011).CrossRefGoogle Scholar
  28. 28.
    J. J. Gracio, Q. H. Fan, and J. C. Madaleno, J. Phys. D: Appl. Phys. 43, 374017 (2010).CrossRefGoogle Scholar
  29. 29.
    M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, Appl. Phys. Lett. 71, 716 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    J. C. Angus and C. C. Hayman, Science 241, 913 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    N. A. Feoktistov, V. V. Afanasiev, V. G. Golubev, S. A. Grudinkin, S. A. Kukushkin, and V. G. Melekhin, Semiconductors 36, 848 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    A. Hoffman, A. Fayer, A. Laikhtman, and R. Brener, J. Appl. Phys. 77, 3126 (1995).ADSCrossRefGoogle Scholar
  33. 33.
    S. A. Grudinkin, T. S. Perova, R. A. Moore, Y. P. Rakovich, V. G. Golubev, and N. A. Feoktistov, Opt. Mater. 29, 983 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 35, 753 (1993).ADSGoogle Scholar
  35. 35.
    O. A. Williams, Diamond Relat. Mater. 20, 621 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    S. Prawer and R. J. Nemanich, Phil. Trans. R. Soc. London A 362, 2537 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    D.-W. Kweon, J.-Y. Lee, and D. Kim, J. Appl. Phys. 69, 8329 (1991).ADSCrossRefGoogle Scholar
  38. 38.
    L. Bergman, M. T. McClure, J. T. Glass, and R. J. Nemanich, J. Appl. Phys. 76, 3020 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. A. Grudinkin
    • 1
  • N. A. Feoktistov
    • 1
  • K. V. Bogdanov
    • 2
  • M. A. Baranov
    • 2
  • A. V. Baranov
    • 2
  • A. V. Fedorov
    • 2
  • V. G. Golubev
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations