Semiconductors

, Volume 47, Issue 12, pp 1574–1577 | Cite as

Lateral photoconductivity in structures with Ge/Si quantum dots

  • V. Yu. Panevin
  • A. N. Sofronov
  • L. E. Vorobjev
  • D. A. Firsov
  • V. A. Shalygin
  • M. Ya. Vinnichenko
  • R. M. Balagula
  • A. A. Tonkikh
  • P. Werner
  • B. Fuhrman
  • G. Schmidt
Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March, 2013 (Continuation)

Abstract

The spectra of lateral photoconductivity and optical absorption caused by the intraband optical transitions of holes in Ge/Si quantum dots are studied at different lattice temperatures. Polarization-dependent spectral features related to the transitions of holes from the quantum dot (QD) ground state are revealed in the optical spectra. Temperature photoconductivity quenching caused by the reverse trapping of nonequilibrium free holes by the QD bound state is observed. The obtained experimental data make it possible to determine the height of the surface band bending at the QD heterointerface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Antonov, Yu. N. Drozdov, Z. F. Krasil’nik, et al., in Proceedings of the 9th Russian Conference on Semiconductor Physics “Semiconductors 2009” (Novosibirsk, 2009) p. 310.Google Scholar
  2. 2.
    N. P. Stepina, E. S. Koptev, A. V. Dvurechenskii, A. I. Nikiforov, J. Gerharz, J. Moers, and D. Gruetzmacher, Appl. Phys. Lett. 98, 142101 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Talochkin and I. B. Chistokhin, J. Exp. Theor. Phys. 113, 510 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    T. Tayagaki, N. Usami, W. Pan, Y. Hoshi, K. Ooi, and Y. Kanemitsu, Appl. Phys. Lett. 101, 133905 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Yakimov, A. V. Dvurechenskii, N. P. Stepina, and A. I. Nikiforov, Phys. Rev. B 62, 9939 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Y. Y. Proskuryakov, J. Appl. Phys. 89, 5676 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    L. E. Vorob’ev, D. A. Firsov, V. A. Shalygin, V. Yu. Panevin, A. N. Sofronov, A. I. Yakimov, A. V. Dvurechenskii, A. A. Tonkikh, and P. Werner, Semiconductors 46, 1529 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Yakimov, A. A. Bloshkin, V. A. Timofeev, A. I. Nikiforov, and A. V. Dvurechenskii, Appl. Phys. Lett. 100, 053507 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. Tonkikh, N. Zakharov, V. Talalaev, and P. Werner, Phys. Status Solidi RRL 4, 224 (2010).CrossRefGoogle Scholar
  10. 10.
    A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, A. A. Bloshkin, A. V. Nenashev, and V. A. Volodin, Phys. Rev. B 73, 115333 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).ADSCrossRefGoogle Scholar
  12. 12.
    M. S. Anikeeva, M. Ya. Vinnichenko, D. A. Firsov, L. E. Vorob’ev, and A. A. Tonkikh, Nauch.-Tekh. Vedom. SPb. State Polytechnical Univ., Fiz.-Mat. Nauki 4, 9 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. Yu. Panevin
    • 1
  • A. N. Sofronov
    • 1
  • L. E. Vorobjev
    • 1
  • D. A. Firsov
    • 1
  • V. A. Shalygin
    • 1
  • M. Ya. Vinnichenko
    • 1
  • R. M. Balagula
    • 1
  • A. A. Tonkikh
    • 2
    • 5
  • P. Werner
    • 2
  • B. Fuhrman
    • 3
  • G. Schmidt
    • 4
  1. 1.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Max Planck Institute of Microstructure PhysicsHalle (Saale)Germany
  3. 3.Martin-Luther-Universität Halle-WittenbergInterdisziplinäres Zentrum für Materialwissenschaften (IZM)Halle (Saale)Germany
  4. 4.Martin-Luther-Universität Halle-WittenbergInstitut für PhysikHalle (Saale)Germany
  5. 5.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations