, Volume 47, Issue 11, pp 1452–1455 | Cite as

Pseudomorphic GeSn/Ge (001) heterostructures

Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March, 2013


The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b L ≥ 1.47 eV.


Heavy Hole Indirect Transition Valence Band Maximum High Resolution Transmission Electron Microscopy Image Heavy Electron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Pavesi, Proc. SPIE 4997, 206 (2003).CrossRefGoogle Scholar
  2. 2.
    X. Liu, R. M. Osgood, jr, Y. A. Vlasov, and W. M. J. Green, Nature Photon. 4, 557 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    R. F. C. Farrow, D. S. Robertson, G. M. Williams, A. G. Cullis, G. R. Jones, L. M. Young, and P. N. J. Dennis, J. Cryst. Growth 54, 507 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, Appl. Phys. Lett. 99, 181125 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    J. Kouvetakis, J. Menendez, and A. V. G. Chizmeshya, Ann. Rev. Mater. Res. 36, 497 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. I. Mashanov, A. I. Nikiforov, O. P. Pchelyakov, and X. S. Wu, AIP Adv. 1, 042118 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    P. Lawaetz, Phys. Rev. B 4, 3460 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    C. F. Lavine and A. W. Ewald, J. Phys. Chem. Sol. 32, 1121 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, Phys. Rev. B 73, 125207 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    G. Sun, R. A. Soref, and H. H. Cheng, J. Appl. Phys. 108, 033107 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    W.-J. Yin, X.-G. Gong, and S.-H. Wie, Phys. Rev. B 78, 161203R (2008).ADSCrossRefGoogle Scholar
  12. 12.
    C. G. van de Walle, Phys. Rev. B 39, 1871 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    O. Madelung, M. Schultz, and H. Weiss, Physics of Group IV Elements and III-V Compounds, 1st ed. (Springer, New York, 1982), vol. 17a.Google Scholar
  14. 14.
    P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, and J. Kouvetakis, Appl. Phys. Lett. 84, 888 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia
  3. 3.ZIK SiLi-nanoMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations