Advertisement

Semiconductors

, Volume 47, Issue 10, pp 1397–1404 | Cite as

Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

  • V. V. Korenev
  • A. V. Savelyev
  • A. E. Zhukov
  • A. V. Omelchenko
  • M. V. Maximov
Physics of Semiconductor Devices

Abstract

It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

Keywords

Excited State Capture Rate State Lasing Carrier Dynamic Electron Capture Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Zhukov and A. R. Kovsh, Quantum Electron. 38, 408 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, and Zh. I. Alferov, Semiconductors 41, 606 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    C. F. Lam, Passive Optical Networks: Principles and Practice (Elsevier, San Diego, 2007), p. 158.Google Scholar
  4. 4.
    H. S. Djie, B. S. Ooi, X. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, and M. Hopkinson, Opt. Lett. 32, 44 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, Opt. Express 18, 27028 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).CrossRefGoogle Scholar
  7. 7.
    M. Grundmann, A. Weber, K. Goede, V. M. Ustinov, A.E. Zhukov, N. N. Ledentsov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 77, 4 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Zhukov, A. R. Kovsh, D. A. Livshits, V. M. Ustinov, and Zh. I. Alferov, Semicond. Sci. Technol. 18, 774 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    A. Markus, J. X. Chen, C. Paranthoén, A. Fiore, C. Platz, and O. Gauthier-Lafaye, Appl. Phys. Lett. 82, 1818 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    A. Markus and A. Fiore, Phys. Status Solidi 201, 338 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    A. Fiore, A. Markus, and M. Rossetti, Proc. SPIE 5840, 464 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, and Z. G. Wang, Physica E 39, 203 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    L. Jiang and L. V. Asryan, IEEE Photon. Tech. Lett. 18, 2611 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    J. Lee and D. Lee, J. Korean Phys. Soc. 58, 239 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. J. Kim, Y. K. Joshi, and A. G. Fedorov, J. Appl. Phys. 107, 073104 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    H. M. Ji, T. Yang, Y. L. Cao, P. F. Xu, Y. X. Gu, and Z. G. Wang, Jpn. J. Appl. Phys. 49, 072103 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, K. Akiyama, T. Otsubo, and Y. Nakata, J. Appl. Phys. 97, 043523 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. E. Zhukov, M. V. Maksimov, Yu. M. Shernyakov, D. A. Livshits, A. V. Savel’ev, F. I. Zubov, and V. V. Kli- menko, Semiconductors 46, 231 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    E. A. Viktorov, P. Mandel, Y. Tanguy, J. Houlihan, and G. Huyet, Appl. Phys. Lett. 87, 053113 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    C. Platz, C. Paranthoén, P. Caroff, N. Bertru, C. Labbé, J. Even, O. Dehaese, H. Folliot, A. Le Corre, S. Loualiche, G. Moreau, J. C. Simone, and A. Ram- dane, Semicond. Sci. Technol. 20, 459 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiar- ski, M. Gioannini, and S. Loualiche, IEEE J. Quantum Eectron. 43, 810 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    M. Gioannini, J. Appl. Phys. 111, 043108 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    M. Sugawara, K. Mukai, and H. Shoji, Appl. Phys. Lett. 71, 2791 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, Appl. Phys. Lett. 102, 112101 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    L. V. Asryan and S. Luryi, Appl. Phys. Lett. 83, 5368 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, and Zh. I. Alferov, Laser Phys. 13, 319 (2003).Google Scholar
  27. 27.
    A. V. Savelyev and A. E. Zhukov, in Proceedings of the Internationa Nano-Optoelectronics Workshop (iNOW) (St.-Petersburg, Russia, Würzburg, Germany, 2011), vol. 1, p. 43.Google Scholar
  28. 28.
    V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, M. V. Maximov, and Yu. M. Shernyakov, in Proceedings of the 15th International Conference on Laser Optics 2012, St.-Petersburg, 2012, Ed. by E. A. Viktorov (SPb Univ. of ITMO, 2012), p. 59.Google Scholar
  29. 29.
    V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, M. V. Maximov, and Yu. M. Shernyakov, Proc. SPIE 8432, 84321L (2012).ADSCrossRefGoogle Scholar
  30. 30.
    K. Lüdge and E. Schöll, IEEE J. Quantum Electron. 45, 1396 (2009).CrossRefGoogle Scholar
  31. 31.
    L. V. Asryan and R. A. Suris, Semicond. Sci. Technol. 11, 554 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    P. Miska, C. Paranthoën, J. Even, O. Dehaese, H. Fol- liot, N. Bertru, S. Loualiche, M. Senes, and X. Marie, Semicond. Sci. Technol. 17, L63 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, Phys. Rev. B 54, 11532 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    R. P. Prasankumar, R. S. Attaluri, R. D. Averitt, J. Urayama, N. Weisse-Bernstein, P. Rotella, A. D. Stintz, S. Krishna, and A. J. Taylor, Opt. Express 16, 1165 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993), p. 58.Google Scholar
  36. 36.
    L. Höglund, K. F. Karlsson, P. O. Holtz, H. Pettersson, M. E. Pistol, Q. Wang, S. Almqvist, C. Asplund, H. Malm, E. Petrini, and J. Y. Andersson, Phys. Rev. B 82, 035314 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Korenev
    • 1
    • 2
  • A. V. Savelyev
    • 1
    • 2
  • A. E. Zhukov
    • 1
    • 2
    • 3
  • A. V. Omelchenko
    • 1
    • 2
  • M. V. Maximov
    • 1
    • 2
    • 3
  1. 1.Saint Petersburg Academic University—Nanotechnology Research and Education CenterSt. PetersburgRussia
  2. 2.Saint Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt.PetersburgRussia

Personalised recommendations